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Abstract. For the primal-dual monotone inclusion problem, the split-Douglas-Rach-

ford (SDR) algorithm is a well-known first-order splitting method. Similar to other

first-order algorithms, the efficiency of SDR is greatly influenced by its step param-
eters. Therefore, expanding the range of stepsizes may lead to improved numerical

performance. In this paper, we prove that the stepsize range of SDR can be ex-

panded based on a series of properties of the product Hilbert space. Moreover,
we present a concise counterexample to illustrate that the newly proposed stepsize

range cannot be further enhanced. Furthermore, to bridge the theoretical gap in
the convergence rate of SDR, we analyze the descent of SDR’s fixed point residu-

als and provide the first proof of a sublinear convergence rate for the fixed point

residuals. As an application, we utilize SDR to solve separable convex optimization
problems with linear equality constraints and develop a novel preconditioned alter-

nating direction method of multipliers (NP-ADMM). This method can handle sce-

narios where two linear operators are not identity operators. We propose strict con-
vergence conditions and convergence rates for the preconditioned primal-dual split

(P-PDS) method and NP-ADMM by demonstrating the relationship between SDR,
P-PDS, and NP-ADMM. Finally, we conduct four numerical experiments to verify the

computational efficiency of these algorithms and demonstrate that the performance

of these algorithms has been significantly improved with the improved conditions.
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1. Introduction

Let G and H be two real Hilbert spaces. Let B : G → 2G and A : H → 2H be

maximal monotone operators, and let Id be the identity operator. Let L : H → G be

a continuous nonzero linear operator. L∗ : G → H is the adjoint of L. This paper

focuses on the primal-dual monotone inclusion problem, which can be described as

follows:

Find (u, x) ∈ G ×H s.t.

{

0 ∈ Ax+ L∗u,

0 ∈ B−1u− Lx.
(1.1)

The solution set of (1.1) is defined as

Z :=
{

(u, x) ∈ G ×H | 0 ∈ B−1u− Lx, 0 ∈ Ax+ L∗u
}

.

We assume Z is nonempty. Problem (1.1) finds wide applications in various fields

including variational inequalities [20], optimization [37], economics and traffic theory

[22], signal and image processing [12], and differential inclusion [3,38].

A classical instance of problem (1.1) is the following monotone inclusion problem:

{

0 ∈ ∂f(x) + L∗u,

0 ∈ ∂h∗(u)− Lx,
(1.2)

where f : H → (−∞,∞] and h : G → (−∞,∞] are proper lower semicontinuous

convex functions. Problem (1.2) can be equivalently written as the following convex-

concave saddle point problem:

min
x∈H

max
u∈G

{

f(x) + 〈u,Lx〉 − h∗(u)
}

. (1.3)

Moreover, if (u∗, x∗) is a solution to problem (1.2), then x∗ is a solution to the following

convex optimization problem:

min
x∈H

f(x) + h(Lx), (1.4)

and u∗ is a solution to the dual problem of (1.4)

min
u∈K

f∗(−L∗u) + h∗(u). (1.5)

For solving problem (1.3), the Arrow-Hurwicz-Uzawa algorithm (AHUA) was first

proposed in [2]. The recursion of AHUA is described as



















yk+1 = argmin
y∈G

{

h∗(y) +
1

2σ
‖y − (yk + σLxk)‖2

}

,

xk+1 = argmin
x∈H

{

f(x) +
1

2τ
‖x− (xk − τL∗yk+1)‖2

}

.


