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Abstract. In this paper, we investigate the numerical solution of the two-dimension-
al fractional Laplacian wave equations. After splitting out the Riesz fractional deriva-
tives from the fractional Laplacian, we treat the Riesz fractional derivatives with an
implicit scheme while solving the rest part explicitly. Thanks to the tensor structure
of the Riesz fractional derivatives, a splitting alternative direction implicit (S-ADI)
scheme is proposed by incorporating an ADI remainder. Then the Gohberg-Semencul
formula, combined with fast Fourier transform, is proposed to solve the derived
Toeplitz linear systems at each time integration. Theoretically, we demonstrate that
the S-ADI scheme is unconditionally stable and possesses second-order accuracy.
Finally, numerical experiments are performed to demonstrate the accuracy and effi-
ciency of the S-ADI scheme.
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1. Introduction

In this paper, we consider the numerical solution for the following initial boundary
value problem of the fractional Laplacian wave equation:

Ofu(z,y,t) = —k(—=A)2u(z,y,t) + g(u(z,y. 1)), (z,y) €Q, te(0,T], (L1
u(z,y,t) =0, (z,y) €Q, te[0,T], (1.2)
u(z,y,0) = p1(z,y), (z,y) € Q, (1.3)
du(z,y,0) = pa(z,y), (z,y) € Q, (1.4)

where « € (1,2) is the order of the fractional Laplacian, 7' > 0 is the length of the time
interval, Q1 = (a,b)? is a square domain in R?, Q¢ = R?\ Q and ¢, ¢ are two given
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functions on Q. For a function v : R% — R, the fractional Laplacian is defined by [9]

i 2Tt d)/2) @) =),
(=A)zv() : 71'%|I’(—0z/2)| V. /Rd lz — yldto dy, € RY,

where ‘p.v.’ means that this integral takes its Cauchy principal value. When d = 1, the
fractional Laplacian is equivalent to the Riesz fractional derivative [1]

03 [l — €' v(€)d¢

Opv(x) = — 2cos(ar/2)T(2 —a) ’

z € R.

The fractional Laplacian wave equation (1.1) with o« = 2 is the classical integer or-
der wave equation, which has wide-ranging applications in quantum field theory [26],
particle physics [7], and superconductor modelling [30]. In recent years, fractional
calculus has garnered significant attention from researchers due to its successful ap-
plications in anomalous dispersion, random walk, and control systems [22, 32, 33].
As a result, the space fractional wave equation, which is a generalization of the in-
teger order wave equation, has been extensively studied. Regarding solution theory,
Karch [13] gave the long-time asymptotics for the linear damped fractional Laplacian
wave equation. Chen et al. [2] presented a L” estimate for the solution of the linear
damped fractional Laplacian wave equation, which was then used to prove the exis-
tence of the global solution of the semilinear problem. Later, Ruan et al. [28] obtained
the long-time decay estimate in Hardy spaces HP? for this linear problem. Fujiwara
et al. [6] investigated the global well-posedness and the time-decay estimate for the
solution of the damped fractional Laplacian wave equation with power nonlinearities.
For the time-space fractional wave equation with spectral fractional Laplacian, Otarola
and Salgado [23] proved the existence and uniqueness of the solution. Meanwhile, the
regularity of the solution is derived. Djida et al. [4] obtained the existence and the LP
estimate of the classical solution of the semilinear time-space fractional wave equation.
In the aspect of numerical solutions, for the one-dimensional (1D) fractional Laplacian
wave equation, also known as the 1D Riesz fractional wave equation, numerous re-
lated works exist [5,19,20,38]. For the two-dimensional (2D) case, Wang and Shi [36]
proposed an energy-conserving exponential scalar auxiliary variable spectral scheme
for the fractional Laplacian wave equation on an unbounded domain. Hu et al. [11]
employed a dissipation-preserving Crank-Nicolson pseudo-spectral method to solve the
fractional Laplacian sine-Gordon equation with damping. Guo et al. [8] combined the
Crank-Nicolson scheme with the exponential scalar auxiliary variable technique in the
time direction and employed spectral-Galerkin method in the space direction to solve
the coupled fractional Laplacian Klein-Gordon equation. However, the error estima-
tions in those works are incomplete. Recently, based on the progress made in [9]
about the finite difference approximation of the multi-dimensional fractional Laplacian
operator, Hu et al. [10] proposed a dissipation-preserving difference scheme for the
damped fractional Laplacian wave equation and established the unconditional stability
and convergence of the proposed scheme.



