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Abstract. Fourier stability analysis works well and is popular for the finite differ-

ence schemes of the linear partial differential equations. However, there are less
works on the Fourier convergence analysis, and many of the existing ones require

unreasonable assumptions. After removing the assumptions, we provide rigorous
Fourier convergence analyses for the equation with one time fractional derivative

in our previous work. In the current work, by using different ideas, we propose

the rigorous Fourier convergence analyses for the equation with several time frac-
tional derivatives, i.e., the Fokker-Planck equation of tempered fractional Langevin-

Brownian motion, still without the strong assumptions. The numerical experiments

are performed to confirm the theoretical results.
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1. Introduction

Anomalous dynamics are ubiquitous in the nature world, especially in the complex

system, the applications of which have a broad range, including physics [3], chem-

istry [19], and biology [38], etc. Tracing the history of stochastic dynamics, in 1827,

Brown experimentally observed the irregular movement of pollen particles in water,

being called Brownian motion (or normal diffusion), which dominated for quite some

time. In fact, normal diffusion only represents a small part of the diffusion process. In

the past decades, non-Brownian motion (or anomalous diffusion), which is widespread

in nature, has been gradually discovered in experiments, covering the transport of

charge carriers in amorphous semiconductors [15], the propagation of contaminants
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in groundwater [20], the movement of proteins in intracellular media [35], the trans-

port of tracers in turbulent flows [34], the search patterns of foraging animals, and

particle trajectories in dusty plasma [26], all of which cannot be described by Fick or

Fourier’s laws. In addition, numerous experiments have shown that the diffusion be-

havior of many systems in nature can generally be characterized by the mean squared

displacement (MSD) of particles [27]. We usually distinguish between normal and

anomalous diffusive processes according to the MSD (see [17, 39] and the references

therein), i.e., 〈
x2(t)

〉
∼ tβ,

where β is the anomalous diffusion index. We call it subdiffusion if 0 < β < 1, normal

diffusion if β = 1, and superdiffusion if β > 1. Especially, we call it underballistic

hyperdiffusion, ballistic diffusion, and hyperballistic diffusion as 1 < β < 2, β = 2, and

β > 2, respectively, see, e.g., [29].

Anomalous diffusion is usually described by stochastic processes, including continu-

ous time random walk model (CTRW), subordinate process, Lévy process, generalized

Langevin equation [9–12, 22, 30], etc. In [7], the Klein-Kramers equation governing

the probability density function of the Langevin equation with subordinate time scale

transformation is derived, namely,
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where 0 < β < 1, and the two constants A and A are given as

A = 2Γ(2H)(2λ)−2HA2,

A =
√
kBT/

[
1 + 2Γ(2H)(2λ)−2H

]

with 0 < H < 1, λ > 0, T being the absolute temperature of the environment, and

kB being the Boltzmann constant. Here, the mean square displacement of the particle

described by Eq. (1.1) at time t is

〈
(∆X(t))2

〉
→
(√

kBTA

βΓ(2β)
− A2

(βΓ(β))2

)
t2β,

and, according to [32] the Riemann-Liouville fractional derivative 0D
q
t is defined by

0D
q
tu(t) =

1

Γ(m− q)

dm

dtm

∫ t

0
(t− s)m−1−qu(s) ds, m− 1 < q ≤ m,

where Γ(·) is the Gamma function defined by

Γ(z) =

∫ ∞

0
sz−1e−sds, R(z) > 0.


