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Abstract. In this article, we propose a novel stabilized physics informed neural net-
works method (SPINNs) for solving wave equations. In general, this method not
only demonstrates theoretical convergence but also exhibits higher efficiency com-
pared to the original PINNs. By replacing the L2 norm with H! norm in the learning
of initial condition and boundary condition, we theoretically proved that the error of
solution can be upper bounded by the risk in SPINNs. Based on this, we decompose
the error of SPINNs into approximation error, statistical error and optimization er-
ror. Furthermore, by applying the approximating theory of ReLU? networks and the
learning theory on Rademacher complexity, covering number and pseudo-dimension
of neural networks, we present a systematical non-asymptotic convergence analysis
on our method, which shows that the error of SPINNs can be well controlled if the
number of training samples, depth and width of the deep neural networks have
been appropriately chosen. Two illustrative numerical examples on 1-dimensional
and 2-dimensional wave equations demonstrate that SPINNs can achieve a faster
and better convergence than classical PINNs method.
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1. Introduction

During the past few decades, numerical methods of partial differential equations
(PDEs) have been widely studied and applied in various fields of scientific compu-
tation [4,5,17,21]. Among these, due to the central significance in solid mechanics,
acoustics and electromagnetism, the numerical solution for wave equation attracts con-
siderable attention, and a lot of work has been done to analyze the convergence rate,
improve the solving efficiency and deal with practical problems such as boundary con-
ditions. For many real problems with complex region, however, designing efficient and
accurate algorithms with practical absorbing boundary conditions is still difficult, es-
pecially for problems with irregular boundary. Furthermore, in high-dimensional case,
many traditional methods may become even intractable due to the curse of dimension-
ality, which leads to an exponential increase in degree of freedom with the dimension
of problem.

More recently, inspired by the great success of neural network in field of com-
putational science, solving PDEs with deep learning has become as a highly promis-
ing topic [1, 3,8, 13,14, 19,28]. Several numerical schemes have been proposed to
solve PDEs using neural networks, including the physics-informed neural networks
(PINNs) [18], deep Ritz method (DRM) [26] and weak adversarial neural networks
(WANSs) [27]. While the DRM and WANSs formulate the PDEs as variational problems,
PINNs solve PDEs by minimizing the residual term penalized with certain boundary
and initial constraints. Due to its simplicity and flexibility in its formulation, PINNs
have garnered significant attention and have been extended to address a wide range
of problems, including the conservation laws [9], the nonlocal Laplacian operator [15]
and fractional PDEs [16]. In the field of wave equations, researchers have also suc-
cessfully applied PINNs to the modeling of scattered acoustic fields [24], including
transcranial ultrasound wave [25] and seismic wave [7]. In these works, all of the au-
thors observed an interesting phenomenon that training PINNs without any boundary
constraints may lead to a solution under absorbing boundary condition. In another
word, the waves obtained by PINNs without boundary loss will be naturally absorbed
at the boundary. This phenomenon, in fact, greatly improves the application value of
PINNs in wave simulation, especially for inverse scattering problems. On the other
hand, although PINNs have been widely used in the simulation of waves, a rigorous
numerical analysis of PINNs for wave equations and more efficient training strategy
are still needed.

In this work, we propose the stabilized physics informed neural networks for simu-
lation of waves. By replacing the L? norm in initial condition and boundary condition
with H! norm, we obtain a stable PINNs method, in the sense that the error in solution
can be upper bounded by the risk during training. It is worth mentioning that, in 2017
a similar idea called Sobolev training has been proposed to improve the efficiency for
regression [6]. Later in [20, 23], the authors generalized this idea to the training of
PINNs, with applications to heat equation, Burgers’ equation, Fokker-Planck equation
and elasto-plasticity models. One main difference between our model and these works



