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Abstract. This paper presents a transformed L1 (TL1) finite difference method for
the time-fractional coupled nonlinear Schrédinger system. Unconditionally optimal
L? error estimates of the fully discrete scheme are obtained. The convergence re-
sults indicate that the method has an order of 2 in the spatial direction and an
order of 2 — « in the temporal direction. The error estimates hold without any
spatial-temporal stepsize restriction. Such convergence results are obtained by ap-
plying a novel discrete fractional Gronwall inequality and the corresponding Sobolev
embedding theorems. Numerical experiments for both two-dimensional and three-
dimensional models are carried out to confirm our theoretical findings.
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1. Introduction

This paper mainly focuses on constructing and analyzing a transformed L1(TL1)
linearized finite difference scheme for solving the time-fractional coupled nonlinear
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Schrédinger (TF-CNLS) system

i0fu + Au+ fi(u,v)u =0, xeQ, 0<t<T, (1.1)
i0fv + Av + fa(u,v)v =0, re, 0<t<T, (1.2)
u(z,0) = up(z), v(x,0)=1vo(x), z €L, (1.3)
u(z, t) =0, wv(z,t) =0, x €0, telo,T], (1.4)

where i = /=1, Q = [0,L1] x -+ x [0,Lg] € R (d > 1) is a bounded convex and
smooth polygon/polyhedron. f;(u,v) and fs(u,v) are nonlinear functions. u(x,t) and
v(x,t) are space-time dependent complex valued functions describing envelopes of two
polarized optical wave packets, which are defined in © x [0,7]. Here 9 denotes the
Caputo fractional time derivative,

o B 1 Pou(z,z) 1
6tu(t)—r(1_a)/0 9 (t_z)adz, 0<ax<l

with I'(-) being the usual Gamma function. Since this system of fractional partial dif-
ferential equations can describe nonlocality behaviors exactly, it is usually used to ex-
plain many physical phenomena, such as quantum dynamics. It is challenging to ade-
quately capture nonlocality behaviors when modeling within the framework of classi-
cal integer-order calculus [9,45]. Moreover, it includes some important variants. For
instance, when « tends to 1, the system would converge to the classical coupled nonlin-
ear Schrodinger (CNLS) equations. The TF-CNLS equations have numerous significant
industrial applications, including beam propagation in Kerr-like photorefractive me-
dia, multi-component Bose-Einstein condensates, rogue waves on a multi-soliton back-
ground, and description of coupled modes in birefringent media or pulse propagation
in multimode fibers [10,12,20,34,38,51].

Generally speaking, the solutions of the time-fractional problems have certain initial
layers. To describe the initial singularities, it is typically assumed that problem (1.1)-
(1.4) owns unique solutions u, v satisfying [19,42,44]

alu a—l
(:)l
Ha—;’ <Cy(1+t*hH, 1=1,2, 0<t<T,

where C, and C, are positive constants independent of ¢ and the domain 2. Up to
now, there are many methods to deal with the singularity of fractional derivatives.
For instance, Hou and Xu [14] introduced a new class of generalized fractional Jacobi
polynomials, and then formulate Galerkin and Petrov-Galerkin spectral methods. More
related works by using spectral methods could be seen in [29,32]. Besides, Jin [18]
showed some high-order BDF convolution quadrature methods and more works we
refer readers to [8,49]. In addition, there are finite difference methods on the non-
uniformed meshes [6,30, 43, 50,53], L2 — 1, scheme [1,56,57] and the transformed
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L1 method [25-27]. We also recommend [2, 23, 33,36,47,48,55] to readers for other
efficient works.

In the past several years, many numerical results have been done for the related
models. Bhrawy [4] applied a new Jacobi spectral collocation method for solving the
TF-CNLS system. Hendy [13] constructed a L1-Galerkin spectral scheme for coupled
nonlinear space-time fractional Schrodinger equations. Li [28] employed a fast lin-
earized conservative finite element method for the TF-CNLS equations. Qin [40] pro-
posed an Alikhanov linearized Galerkin finite element method for the TE-NLS equa-
tions. More details on the time-fractional partial differential equations can be found
in [7,15-17,35,37,52].

It is noted that the early error estimates for the high-dimensional nonlinear prob-
lems are usually obtained under a certain space-time step-restriction of 7 = O(h% (),
where d is the dimension, 7 is the temporal step size, h is the spatial mesh size and p
denotes the temporal convergence order. Such space-time step-restriction is required
in the error analysis but unnecessary in the actual computation, see e.g., [3, 11, 54].
In order to remove the restriction, a temporal-spatial error splitting approach was sug-
gested in [21,22]. This yields the so-called unconditional error analysis for the high-
dimensional nonlinear time-dependent problems. The approach was also widely used
to obtain the optimally unconditional error estimates of different schemes for time frac-
tional problems, see e.g., [25-27,31,41].

In this paper, we follow the ideas in [24,39] and introduce the following change of
variable:

t* = s,

we arrive at an equivalent time re-scaled s-fractional differential equation. Then, the
temporal discretization is achieved by using the transformed L1 scheme and the extrap-
olated methods, taking the initial singularity into account. The fully-discrete scheme is
developed, with the spatial discretization done using the central finite difference meth-
ods. The scheme is quite effective for different parameters « in both two and three
dimensional cases. Then, the optimally unconditional convergence results of the fully-
discrete scheme are obtained. The results indicate that the optimal L? error estimates
hold without any spatial-temporal stepsize restrictions, i.e., 7 = O(h) for a positive
constant c.

The proof of unconditional convergence results consist of two parts. Firstly, we
show the results hold for the following special case, i.e.,

filu,v) = ul® + BJv)%,  fa(u,v) = [v|* + Blul?, (1.5)

where 3 is a given constant denoting the wave-wave interaction coefficient character-
izing the cross-phase modulation of wave packets. In such a case, the unconditional
convergence analysis is proved rigorously by using the corresponding Sobolev embed-
ding theorems and a new discrete fractional Gronwall inequality. Secondly, we show
that the unconditional results hold for the equations with the general nonlinear terms
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fi(u,v) and fa(u,v). To the end, we introduce the so-called temporal-spatial error split-
ting approach. We provide a routing way to get the optimal unconditional convergence
results of the fully-discrete schemes.

The rest of the paper is organized as follows. In Section 2, we present a trans-
formed L1 implicit scheme and the main results. In Section 3, by introducing some
notations and lemmas, we give a complete proof of the main results. In Section 4, we
present a routing way to obtain the unconditional convergence results. In Section 5,
we present several numerical experiments to confirm our theoretical results. Finally,
some conclusions are given in Section 6.

Throughout the paper, we let C' be a positive constant that is independent of the
mesh sizes and may be different in different places.

2. Derivation of the transformed L1 scheme

In this section, we first transform system (1.1)-(1.4) into an equivalent form by
introducing the change of variable ¢t = s!/®. Then we apply the classical L1 scheme and
the finite difference method to the resulting problem, which gives the transformed L1
scheme.

Inspired by the recent research work in [24,39], we introduce the change of variable
t = s/, Denote

i(z,y,s) = u(z,y, s, o(z,y,s) =v(z,y,s"*)
and then obtain

1 Pou(r) 1
of'u = d
TT—a) Jo or -
1 * ou(r) 1 .
= dr =: D¢
F'l—a) )y Or (s¥/a—gl/e) " st
1 Pou(r)y 1
Ofv = d
tY Nl—«)Jy oOr (t—r)> "
1 500(r) 1 -
= dr =: D%?.
rl—a) Jo 0Or (st/o—pl/a)a " s
The system (1.1)-(1.2) can be transformed into the following equivalent form:
iD%+ Ati+ f1(6,0)a=0, z€Q, 0<s<T 2.1
iDY0+ AD+ fo(0,8)0 =0, z€Q, 0<s<T" (2.2)

Similar to the theoretical analysis in

[24,39], it is reasonable to assume problem (2.1)-

(2.2) admits unique solutions satisfying

l,.

% <Cr(14sVerh ) =12, 0<s< T, (2.3)
S

o' « 1/a+1-1 a

34 <C*(1+s ), =12, 0<s<T®, (2.4)
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where || - || denotes the usual L?-norm and C* is a positive constant independent of s
and domain §2.

Let h; = L;/M;,i = 1,...,d be the spatial stepsizes with given positive integers
M;, i = 1,...,d. The spatial mesh is defined as Q) = {(x1;,, - ,%aj,) | Tiji =
jihi; 0 < j; < M, i =1,...,d}. Let N be a positive integer and {s,, := n7,}_, be the
uniform partition of the interval [0,7%] with 7, = T“/N. Denote the temporal mesh
Qr = {sn |~0 < n < N}. Then we define two grid functions on Q. = Qp x €., that is,
W5 o Vi, 10< 4, <M, 0<n<N;r=1,...,d;d > 1}. Moreover, we denote

Jh :{(.]17 ’.]d)|0 S]Z S MZ,Z: 1aad}a
T =A{0, g |1 <ji < Mj—1,i=1,....d},
Before presenting the scheme, several definitions and notations are introduced below
1 1
Valy = <h—1[ Tt — Ul gals T (U5 a1 — Uﬁ,---,jdo ;

where 7 = (1, , ja).
For U™, V"™ € Qy, we define the inner product
(U™ V") =ha Y USVE,
jeJ,

and some norms

1/p
n|2 __ n n n _ n
U2 = U, 07 = (s X 077)
jed,

1/2
VRl = (hA > \WU;P) o U™ g = max|U2],

jEJh

ixd 1

J€J),

where V7 denotes the conjugate of VJIL and ha = hy - - hg.

J

Now, we are ready to construct the fully-discrete numerical scheme for problem
(2.1)-(2.2). We apply the transformed L1 numerical scheme to approximate the s-
fractional differential operator D%u, which yields

) 1 sn 9a(r) 1
D¢ a4 = d
n I'l—-a) /0 or (S%L/a — pl/a)a "

1 -alsy) —alsj—) [
- I'l—a) Z Ts 1 /

= st (sl = 1/

dr +~7

= Z ann—j|U(s;) — a(sj—1)] +7
j=1
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n—1

= an,Oﬁ(sn) + Z(anm_j — anm_j_l)&(sj) — anm_lﬁ(so) + 'y?, (2.5
j=1

a similar estimate for D¢ yields

n—1

Dg"f} = an70?~)(8n) + Z(amn_j — amn_j_l)f)(sj) — an7n_11~)(80) + ’yg (2.6)
j=1

with 77, 75 being the temporal truncation errors. The coefficients a,, ,—; in (2.5) and
(2.6) are defined as

1 /SJ 1 .
fnin=j = (1 — ) Jg (81/(1 — pl/a)a "

j—1 n

t
«Q J 1 1/a
7l(1 - ) /t,-_l (b — oo T

It can be further converted into

o /tj/tn 1 p
Unn—i = 7T — o) T a4
I T - a) b1t (1= 2)20
a
= T = B/t a1 =) = Bltaftn 0,1 = a)), 2.7)

where B(z,«,1 — «) is the usual incomplete Beta function, i.e.
zZ
B(z,a,b) = / 271 — z)* .
0

According to (2.5) and (2.6), we can define the following discrete fractional operator:

n—1

Dggn = an,Ofn - Z(an,n—j—l - an,n—j)fj - an,n—1§07 (28)
j=1

where {¢"}V_ is a sequence of functions.
Let (u,v) be the solution of the time-fractional coupled nonlinear Schrédinger sys-
tem (1.1)-(1.4), we denote

13

u? = t(xy,sn) = u(w;, s,ll/o‘), 17;1 = 0(x7,5n) = v(w;, s}/o‘)

<

be the solutions of the transformed equivalent system (2.1)-(2.2). Let {f]j?, }”} be
numerical approximation to {ﬁ;i, ﬁjﬁ,‘}.
With above definitions and notations, the solution (@, 7) of the system (2.1)-(2.2)
satisfies the finite difference equations
iDYA + Ay + G (s, T = P+, jed,, 2<n<N, (2.9)
iDRTY + Ao + G"(v;, ;)08 = Q% + 7y, jeJ,, 2<n<N, (2.10)
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where
Gn(u 1)) — 2(’~n 1‘2 +/8‘?~}n—1’2) _ (’ﬁn—2’2 +5’1~)n—2’2) (211)

is a standard extrapolation approximation with the case (1.5), and the definition of the
operator D mentioned above is given in (2.8).
At the initial step n = 1, it holds

. ~1 ~1 ~0 ~02 1 1 - /
iDRa; + Aptiz + (|G51° + Bl631)az = P +yz, J € Jy, (2.12)
s ol ~1 ~0 0 ~1 1 = !

iD0: + Apds + (]1);,] + Bl %)o s = Qs +72] j € Iy, (2.13)

where PJZ‘, Q;i, 7%, 7% are the truncation errors, which are satisfying

Yy = 1(DYak — DYy, sn)), 1<n<N,
Vos = i(fo@; — Dgo(x3,84)), 1<n <N,
P = Ay — Au(aj, sn) + G"(U V)a ;2
(\u( sn)|? + Blo(z; )[?) (= 2<n <N,
n __ ~n
G = — A0(x7,50) + ( w)os

(
(]v(x;, sn)|? + Blu(xs, sn)l )0 (¥7.8n), 2<n<N,
Pz = Aptiz — Ad(zg,51) + (|a5]” + Blo3]*) az
(|u( ,s1)? + Blo(zg, 1)) a(e J,Sl)
Q3 = Ap; — Ab(xz,51) + (|03 + Blas|) o
(]v(x~,31)] + Blu(zs, 31)\2)6@5,31).

By Taylor formula, we can easily obtain

[P? < Cr2 + 1%, |lQ°* < C(ri +h%)?, 2<n <N, (2.14)
IPY* < Clrs + 8%, [IQY* < C(7s + %) (2.15)
with C a positive constant that is independent of h;, i = 1,...,d, (d > 1) and 7, where

h = max; hi.
Omitting the truncation errors Pj?, Q;&, 7%, 7% in (2.9)-(2.10) and (2.12)-(2.13),
the transformed L1 finite difference scheme for system (2.1)-(2.2) reads

iDIU? + AUP + GM(U, V)UY =0, jed,, 2<n<N, (2.16)
iDSf/jﬁ + Ahf/;" + GV, 0)175" =0, jed,, 2<n<N, (2.17)
iDYUF + AU + (|09 + BIVP )02 =0, je T, (2.18)

says1l 71 702 r7012\y/1 __ = !
iIDIVE + ApVz + (V2] + BIUZP)Ve =0, j € Jj, (2.19)
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subject to
Uj?‘fea‘lh :‘/}’n‘j’eajh :0, 1 STLSN, (2.20)
UJQ = UO(I’;‘), V;O = Uo(l‘jﬁ), j € Jp. (2.21)

As can be seen, the solution {Ujf, f/;" |j € J,;, 2 < n < N} at each time step can be

calculated by solving two uncoupled linear systems (2.16) and (2.17), and the solution
{U]}, Vj-l |j € J,;} can be obtained by solving the systems (2.18) and (2.19). We present

the unconditional convergence results of the proposed scheme (2.16)-(2.21) in the
following theorem. The proof will be left in the next section.

Theorem 2.1. Suppose that system (2.1)-(2.2) admits a unique solution (u,v) satisfying
(2.3)-(2.4). Then the finite difference scheme defined in (2.16)-(2.21) admits a unique
solution and

e+ "1 < C5 (=27 + %)%, 1<n<N, (2.22)

where the error functions are defined by

e§:a§—ﬁg, n;?:ﬁ?—%ﬁ, jeJ,, 0<n<N, (2.23)

and Cj is a positive constant independent of 7 and h.

Remark 2.1. The error estimate (2.22) for high-dimensional nonlinear TF-CNLS sys-
tems holds without certain spatial-temporal stepsize restrictions, e.g., 7 = O(h¢) for
a positive constant c.

3. Proof of the main results

In this section, the unique solvability and unconditional convergence analysis of the
proposed scheme are proved.

3.1. Existence and uniqueness of the scheme

To show the existence of the approximations {(U",V")|1 < n < N} for scheme
(2.16)-(2.21), we shall use the following Brouwer-type theorem and some important
lemmas below.

Lemma 3.1 ([39, Lemma 3.1]). For n > 1, it holds that
0< App-1 < app2 < - < Qn 0-

Lemma 3.2 ([52, Lemma 3.2]). For n > 2, it holds that
ga+l/a—2, —1
Bl
al=°T(2 —a)’

Gno <
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Lemma 3.3 ([5]). Let (H,(-,-)) be a finite dimensional inner product space, || - || be the
associated norm, and let g : H — H be continuous. Assume, moreover, that

39 >0, VzeH, |z|=9, R{g(z),2)>0.
Then, there exists an element z* € H such that g(z*) = 0 and ||z*|| < 9.

Let
e = {’U = (Ul,UQ) = (Ulj‘,UQj‘) |j € Jh}
and define

<U7U > = <(U17U2)7 (U17U2)> - <’01,’01> + <U27U2>7
[0l = o1 ]* + floz]1*.

With the above lemmas and denotations, we can get the unique solvability of the
proposed scheme, see Theorem 3.1.

Theorem 3.1. The scheme (2.16)-(2.21) is uniquely solvable.

Proof. First, we show the unique solvability of the scheme holds for n = 1. In fact,
the existence and uniqueness of the finite difference solution can be obtained by the
decaying mass, which is proved later (in Lemma 3.4).

For the case 2 < n < N, we prefer another way to get the results. According to
(2.8), the scheme (2.16)-(2.17) can be rewritten as

ian,OUJIL - kzl i(an,n—k—l - aln,n—lc)UEIf - ian,nflUJQ
+ Ahf]j’? +G(U, V)U]? =0, jeJ,
ian,OV}n - kz i(an,nfkfl - an,nfk)‘/j‘k - ian,n—lv}o
=1
+Ah175”+én(17,(?)17f” =0, jE Jh.

We first prove the existence of the numerical solution to the scheme. Let w = (w1, ws) €
© and define the map g = (g1, ¢2) on O as follows:

i i oA~ -
g1(w) =w1 — —Apw; — —GU,V)w

an,0 Gn,0

n—1
nn—k—1 — nn—k 7k Gnn—1 770
-y : ok — dnn=lpo 3.1)
=1 n,0

Gn,0

i i oA~ -
g2(w) =wos — —Apws — —G(V,U)we

an,0 Gn,0

n—1
. Z nn—k—1 — Ann—k f/k . anp n—1 f/(] (3 2)
1 Gn,0 Gn,0



10 M. Li et al.

Multiplying both sides of Egs. (3.1) and (3.2) with w3 and W3 respectively, summing
them over €, then taking the real part of the results, we obtain

n—1
Ann—k—1 — Qnn—k ~ An.n— ~
R (g1(w),w1) = len||* - Z bl ER(OF, wy) — R0, wy),
=1 Qn, 0 Gn,0
a a a
—k—1— ko /T 1o/
R (g2(w), wa) = ||lwa* — Z — — %<Vk,w2> — RV wo).
1 an,0 an,0

By using Lemma 3.1, we then get

R (g(w),w) =R {g1(w),w1) + R (g2(w),w2)

n—1
Ann—k—1 — Ann—k An.n—1 7
Y e NG || — LT o
=1 an,0 Gn,0
n—1
Ann—k—1 — Ann—k | Ann—1
oz * = = B TR ozl — LT [l
k=1 an, n,
n—1
> el — 5 3 (an oot — @) (10F + o)
2an70 1
a -1 ~
= S (I 4 o)+l
n,
—1
1S =12 2
5 (annk1 = ) (IVF1 + el
an,O =1
a n—1 ~
=5t (IO + Jlenl )
n,
1 1 n—1
rrk 7k
= 5 (el + ) = 5= 3 (@n k1 = i) (N2 + 174
Y =1
a _ ~ ~
=St (1P + 17°IP?)
n,
1 2 1 “ ~k otrky 2 9nn—1p,770 170N (2
= 1wl = == @it = anpi) [T, V5] = 2222130, 792 ) . (3.3)
2 an,0 1 an,0
Taking
1 n—1 ~ ~ Gy ~ ~
92 = 3" (tnn-k-1— angp) [(TF, V|2 + 222200, 70) |2,
an,0 =1 an,0

we can get that there exists a ¥ > 0 such that for any w € O satisfying |w| = 9, it
holds R(g(w),w) > 0 evidently. By virtue of Lemma 3.3, there exists an element w* € O
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satisfying g(w*) = 0, and we can also get
1 n—1 a 1/2
o~ =150
ol < (== 3 (s = anns) 1O PR+ 22222 @0, 702 )
n,0 =1 Qn,0

We then go on to prove the uniqueness of the solution to scheme (3.1) and (3.2).
Suppose the scheme admits two solutions z = (z1, 29) and Z = (2, Z2), which satisfy

n—1

i i ., = Unn—k—1 — Qnn—Fk 7 nn—1 7
21— —Apz1 — —GU,V)z — Z il nrhgh - 2l g0 — 0, (3.4)
Gn,0 Gn,0 el an,0 Gn,0
i i g a a
AL~ —k—1— —k —1v
2= —Apzp— —G(V,U)zp — > " nnhyk 0 — g, (3.5)
Gn,0 Qn, 0 =1 an,0 Qn, 0
i i “a a a
- - AT T ~ —k—1— —k —1r
a-—MGH - —GU V)5 - " mneRgk - g =0, (3.6)
Gn,0 Gn,0 el an,0 Gn,0
i i g a a
. 3 N TN —k—1— Ann—k 5 ~17
B —Apiy— —G(V,0)5 - > " R Rypk Ly — 0, (3.7)
Gn,0 Qn,0 =1 Gn,0 Qn, 0

Letting ¢ = (¢1,e2) = z — Z and subtracting (3.4)-(3.5) from (3.6)-(3.7) respectively,
we have

&1 — LAhe’:‘l — ;é(ﬁ,f/)&‘l = O, (38)
an,0 Gn,0

g9 — ;Ah€2 — ;é(f/, 0)62 =0. (39)
Gn,0 Qn,0

Computing the inner product of (3.8)-(3.9) with ¢ = (£1,¢2) and then taking the real
part of the result, we obtain

lell* = 0.
This implies that ||| = 0. Consequently, the uniqueness of the solution to scheme
(2.16)-(2.21) is derived and the proof is complete. O

3.2. Stability and some notations
In this subsection, we present some important lemmas which will be used later.

Lemma 3.4. Let (U", f/") be solution of the difference scheme (2.16)-(2.21). Then the
following inequalities:

o™ < 1O°, v <V, 1<n<N (3.10)

hold.
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_ Proof. We first prove it holds for n = 1. Computing the inner product of (2.18) with
U', and taking the imaginary part of the equation, we obtain

112 = RO, TY) < T[T,
which implies that ||| < ||U°||. Similarly, we can prove that [[V!|| < |[VO]].
Multiplying (2.16) by UJP and sum them up for j € J,; to get
iDIT™, ™) — |[VaU™* + Y haG™(U, V)|U2? = 0.
j

The imaginary part of the above equation implies
R(DOT™, T = 0,

which indicates

n—1
an,(]HﬁvnH2 = Z(an,n—k—l - an,n—k)g}%(Uka Un> + an,nflg}%(UO, Un>
k=1
n—1 1 _ _ 1 ~ _
<> 5@nnk1 = anp) (1052 + 10712) + Sana—1 (1002 + 1T°1) .
k=1

It can be further implied that

n—1
an,0||UnH2 < Z(an,n—k—l - an,n—k)HkaH2 + an,n71HU0H2-
k=1
We prove (3.10) by mathematical induction. Suppose that the inequalities (3.10) hold
for1 <n <m— 1, m > 2. We prove that (3.10) also holds when n = m. If n = m, we
have

m—1
amo| 012 < Y @t = @) |_max_ (0¥ + i |0
k=1 -
m—1 R R B
< (@mm—t-1 = ) [U°* + @1 [U°]1? = @ o[U°]?,
k=1

which implies |[U"|| < ||U°||. Similarly, we can prove that ||V"|| < ||V°|| also holds for
1 <n < N. The proof is complete. O

We also need the help of the following lemmas before we give the detailed proof of
Theorem 2.1.

Lemma 3.5 ([24, Lemma 3.2]). Under the assumptions (2.3)-(2.4), we have, for n =
1,2,...,N,
P < Cri=®,  |lygll < Cri—e,

where v{" and ~y4 are the temporal truncation errors and are well defined in (2.5) and (2.6).
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Lemma 3.6 ([46]). Let {w;} be a mesh function defined in 2y, for the three-dimensional
case. Then

- 3/2—3
lwllzr < Cllol 32~ {IVnwllpz + |l 2} 77, 2 <p <,
[wl[ze < CHPP=34||w]| 4, 1<g<p<oo,
where C' is a constant independent of h and the mesh function w.

Lemma 3.7. For any finite time sy = T% > 0 and a specified nonnegative sequence
{)\l}{i 61, assume that there exists a constant \ independent of time step 75 such that
A > Zfi 61 Al Suppose that the grid function sequence {v™ | n > 0} satisfies

n
DEW"? < 3 At + " (4 495 +R), n>1, (3.11)
=1

where y is a constant and ~7, 4 are defined in (2.5)-(2.6). Then, there are some positive
constants Cf and 77 such that, when 75 < 77, it holds that

_ S
0" < 2B, (2)s,) <?}0 + (2(}{73 o4 m}%)) , 1<n<N, (3.12)
where
o0 Zk;
Eo(z) = — 2.
2()=2 T(1+ ka)
k=0
Proof. As in [52], the discrete convolution kernel is defined as follows:
1 1 < ,
Pno =1 Panj=— 3 (Gkk—jo1—Chk—j)Pnnt 1<j<n—1.
n,0 a;,0

k=j+1

The following properties can be found in [52]:

n—1 S;n Sm+1
E = . =0,1,2,... 3.13
jz;pnyn ]F(1+ma) - F(1+ma+a)7 m , 1,2, , ( )
n .
2 P S CIT° (3.14)

J=1

We will obtain the global error Z?Zl an—j(’Y{ + fyg + R) by letting m = 0 in (3.13)
and applying (3.14). It holds that

(v 4+~ + R) <20t ur e 4 MR 3.15
/‘;p7 i(d +73 + R) < 2CTpr; +F(1+a) (3.15)
With the mentioned results, one can get the required results by following the proof
of [52, Theorem 3.1]. O
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3.3. Proof of Theorem 2.1

In this subsection, a complete proof of Theorem 2.1 will be given. A novel discrete
fractional Gronwall inequality is used. This is because the inequality works for the new
time discretization, i.e., the so called transformed L1 scheme. The scheme is derived
by a smoothing transformation ¢ = s'/®, which can be helpful to deal with the initial
singular layer.

Proof. We mainly focus on presenting the proof for three-dimensional problem.
Noting that the error functions defined in (2.23) and subtracting (2.16)-(2.17) and
(2.18)-(2.19) from (2.9)-(2.10) and (2.12)-(2.13), respectively, we get

iDFel + Ape + G" (@, o) — G™(U,V) ~1? = P+, jed,, 2<n<N, (3.16)
iDS + Ay + G™(9,0)0 o~ G (V, U)Vﬂ Q%+, jed,, 2<n<N, (3.17)
Dael + Ahe + (|u0| + B|v0| Je ]5 = P1 —i—yU jeJy, (3.18)
1D%ﬂ+Am7+QWy+ﬂm% = Q% + 7y, je (3.19)
eﬁ = nﬁ =0, jed,, (3.20)
e§|ajh 77—»|8Jh =0, 0<n<N. (3.21)

Multiplying both sides of Eq. (3.18) with ejl and summing them over J,;, we have

iarolle' > = [Vre' 1>+ D ha(jad® + BI2P) ed® = (P +1,e"),
JEJ

where ha = hihohs. The imaginary part of the above equation implies

arolle’|* = S(P* +1,¢€'), (3.22)
and the real part implies
[Vrel]? < max {uo()]* + Blvo(z) [P}l I* + R(P' + 1, €'). (3.23)
By (2.7), we get
aio = mB(a, 1—a)= F(lTi_:a),

where B(-, -) represents the Beta function. Then it follows (3.22) and (3.23) that

le']l < — e (HPlH +lnll) < O+ 1),

7

7| Vael |2 < O (727 + h?)?, (3.24)

where (2.14), (2.15) and Lemma 3.5 have been used.
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Similarly, we can prove that
Il < C (27 + h?),
I Vant|? < C (727 + B?)?, (3.25)
which implies that (2.22) holds when n = 1.

Now, we shall prove a slightly stronger inequality holds for 1 < m < n. There exist
positive constants 7. and kg such that, when 74 < 77, h < hy, it holds

le™ I+ ™ 17 + 7 (IVae™ > + 1Van™|P) < K1 (r27 + h2)°, (3.26)

where K is a positive constant independent of 7, h and m. Clearly from (3.24) and
(3.25) we can see (3.26) holds for m = 1. The inequality is proved by mathematical
induction. We can assume that (3.26) holds for 2 < m < n — 1, all we need is to prove
that (3.26) also holds when m = n. Firstly, multiplying both sides of Eq. (3.16) with
e;l and summing them over J, ,’1 to arrive at

i(D%", ™) — ||[Vpe"||? + R} = (P™ + 47, e™), (3.27)

T

where
Rp=ha Y. [G"(a,@)aﬁ -

J
2 !
]EJh

G U, V)U?| e,
J J

Taking the imaginary part of the above equation gives
R(DZe™, e") + S(RY) = S(P" + 17, €"). (3.28)
We rewrite R} by

jed,
=ha ) GM@,0)|e4? +ha Yy (G"(@,0) = G"(U,V)) (@ — eb)et
jed, jeJ,
=: R}y + Rs. (3.29)
By noting (2.11), it is easy to obtain
S(R1y) =0, (3.30)
and
Bl < ha Y |2 (a8t 2 = 1037 P) 426 (o2 P = (1771 ?)
jeJ,

+ (Jan22 = 02 4 8 (o2 - (72
@3]+ lex] ) [e3], (3.31)
{11+ 1)
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where the similar term can be estimated as
jan* = (O < (a0 (1 - 107 7)
J J J J J J
< (2@ +ler ) fen|
J J J
= Q‘ﬁﬁleeﬁ*l‘ + ‘6271{2.
J J J
Applying it into (3.31) yields
n | < ( ~1E71 Tl,*l ~1272 CL*2)
Rl < ha 3 2 (2 ey a2l
i<, 1 1 2 2
D (2 51 4 52 )
28 (20 |+ 7
+ (2Aen 2+ fen??)
J j
n—1|2 n—22 ~n n n
w5 (2 ) | (1 k) e

< C ("2 + e 21 + M2 + [l 7211%) + Clle™|I?

+C (" HIEs + e 2MZs + " Zs + 0" 2175) lle™ 1z,

where Holder inequality has been used in the last step.
The first term on the left-hand side of (3.28) can be estimated as

n—1
k 0
§R<Dgena en> =R <an,06n - Z (an,n—k—l - an,n—k) € —apn-1€ ,6n>
k=1
n—1

M. Li et al.

(3.32)

= §R<an,06na €n> - Z §R<(an,n—k—1 - an,n—k) ek, 6n> - §R<an,nfleoa en>

k=1
1 n—1 .
> an,O”GNHQ — 5 Z (an,nfkfl — an,nfk) HenHQ _ §an,n_1H€
k=1
1 n—1 )
=53 (@nntt — ann ) [HP = Sanaa )
k=1

1

~ Loejen).

With the above inequalities (3.29)-(3.33), (3.28) deduces to

1 _ . _ .
S DR 1 < C (e M7 + e 21 + [l + [l 2%) + Clle]?

(3.33)

+C (lle"HIZs + e 27 + " HZa + 1" 2 M7a) ™l 7o

+ (PR T D lle™ -

(3.34)
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Similarly, multiplying (3.17) by 77;3 and summing them up for j € J,/l gives

i, ") — Ve + Ry = (Q" + %, 1), (3.35)

where
Ry=hay [Gn(@,a)@@ _

J
2 /
J€J),

G (V,U)V;]n;,.

Taking the imaginary part of (3.35), we obtain
R(DIN"™ n") + S(R3) = Q" + 3, 1"). (3.36)

We rewrite Ry by

jed,
=ha y GM@, @) +ha Y (GN(B,a) = GV, 0)) (8% — o)k
JEJ EEJ;L
=: Rgl + R5L2, (3.37)
from which, it is easy to obtain
S(Ry) =0, (3.38)
and
‘R%’ < ha Z 2 <’1~)§}_1’2 - ‘f/jp ‘ ) +28 (’~n 1‘2 . ’ﬁjg—l‘2>

jed,
<‘~n 2‘2 ‘VIL 2,2) +/8(’~n 2‘2 ’(7]?—2‘2)

< C(In™ P+ 212 + lle™ 12+ [le2(7) + Clin™(I?
+C (I HlZs + 1" 202 + e Zs + lle™217:) ™17 (3.39)

(1221 + 1m21) [z

With the inequalities (3.37)-(3.39) and using the same approach above, (3.36) deduces
to

1 _ . _ .
S DRI I < C (I =M1+ ™21 + Nle™ I + [le™2)1%) + Clin”|?

+C (" Za + "2 M7a + e IFs + lle" 2 17a) ™ 17
+ Q%+ 21D lln™ - (3.40)

On the other hand, by taking the real part in (3.27) and (3.35), we obtain

IVhe™|* = —
IV |I* = —

(De™, ") + R(RY) — R(P™ + 7, €"), (3.41)
(D™, n"™) + R(Ry) = R(Q" +72,1")- (3.42)

R
R
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Denote
n o _n n n o, n n
17" = Dfe" —appe”, 13 = DIn" —anon”.

Then it follows that

n—1
177 = H— D (npk1 = app) € —apn1e’
k=1
n—1 ,
< Z (an,nfkfl - an,nfk) + apn—1 max Hek H
k=1 0<k <n-—1

<anoV K1 (77 + h?)
ga+1/a—2,—1
S merg ooy VO ()
<Cr; ' (rFe+n?), (3.43)
where Lemma 3.2 has been used in the last step. Similarly,

T3 < Cr7t (727 + B?). (3.44)

Since
I(DZe™, ey = S(I7', e™), (3.45)

and by (3.29), we further have
|Ri1| < Clle™ |
From which together with (3.43), (3.45) and (3.32), (3.41) can be derived to

IVhe"|[* = =S(T7', ") + R(RY) — R(P" + 7, ")
< TN+ TP Tl 1D le™ [+ TR [+ Ry
< UTT+ 1P+ D el + Clle™ |2
+C (e A+ e 212 + [l 1P + 1" ~211%)
+C (" HIEs + e 2N Zs + " HZs + 0" 2178) lle™ s (3.46)

Applying the above approach to (3.42), we can similarly get

IV 12 < (T3 +1Q7 1+ 31D 10" | + Cll™ |
+ O (Il A+ 7202 + e 2 + [lem2(1%)
+C (" HiZs + "M 7s + e HZs + e 2 M2e) In"lZe. (3.47)

Next, we show the error estimates hold in two different cases, i.e., 75 < h?/(2=9) or
h < 7'5@7&)/ 2,
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Case 1. 7, < h?/(>~®)_ Based on the induction hypothesis, we use Lemma 3.6 to get
le™ s < ChPllem|p < ChV2RY (7270 + 0%) < 20K PhP2, 1 <m <n—1,
le™llzs < Ch™ eIz,

1™ |5 < Ch=Y2™|| 2 < CRTY2EL? (7270 4 1?) < 20K, PR%2, 1<m<n—1,
0™l s < Ch™ 0™ || 2

When h < hg = (16C*K7) ™!, there are

(" Ha + e 21 + "7 + 172 17:) le®IZs < lle® 172, (3.48)
("= W7 + ™22 + e Mz + e 1Za) ™ 126 < " (122 (3.49)

Applying (3.48) into (3.34) yields

1 B B B B
§D$—“He"H2 <C([le™ P+ 11e™ 212 + ™ 12+ 110" 2)1%)
+ Clle™I*+ (IP™M + IIvEID lle™ |, (3.50)

and applying (3.49) into (3.40) similarly yields

1 _ _ _ _
S DRI I < C (™ A ™20 A+ le™ I + e 21)
+Cln" 12+ Q"I+ 1y 1) ll" I (3.51)

Adding the Egs. (3.50)-(3.51) together, we obtain
DY ([le™ 1+ ™ [I7)
<AC ([le™ 12+ e 2112 4+ ™12 + 10" 21%) + 281 + [In™11%)

F 2P+ D eI+ 2 Q™+ lIvz 1) 7"
<AC (e + e 212 + "2 + I 211%) + 20(le™ |1 + 1" %)

+ 201"+ [+ Q™+ Iz D) /el + [l

According to (2.14) and applying Lemma 3.7 with the substitutions

o" = /e + [,
XAo=2C, A =X=4C, N =0 (I>3),
p=2, R=|[P"|+]Q"[,

we can conclude that

2VCs,
VI + [l < 2E4(20Csn) <\/ €012 + (|02 + 40T 7 + 2V (7 + h2)> :

I'l+a)
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Then by (3.20), we get
[P+ > < € (r2= 4 1) (3.52)
Applying (3.48) into (3.46) yields
IVre™ 12 < (T3 + 1P ]+ 21D el + Clle™ |1
+C (e 17+ Ne™ 21 + [l 12 + " =21) (3.53)
and applying (3.49) into (3.47) yields
Va2 < (T3 1+ 1Q™ | + 511 10"l + Clln" |2
+C (I HP + 1" 212 4+ e+ flem=2)) - (3.54)

Then together with (2.14), (3.26), (3.43), (3.52) and Lemma 3.5, (3.53) can be de-
rived to

[ Vae||? < C (727 + h2)*.
Similarly, we have

Va2 < C (727 + h%)°
The inequality (3.26) is proved in this case.

Case 2. h < 7-5(27(1)/ % We still assume that (3.26) holds when 1 < m < n—1. According
to induction hypothesis and use Lemma 3.6, we can get

2
le™ 17 < C(IVne™ + le™)?,
le™ s < le™lle™ [

< Clle™[[(IVhe™[ + lle™]])

< CTSQ—a (TSQ—a i 7_8(3—204)/2)

< 075(7_40‘)/2, 1<m<n-—1.

When
7y <M = min {(1602)’2/(5’4‘1), 1} ,

we have
40|e™ [ Zalle™ 1 76
< 8O T2 (Ve |2 + [le” 1)
< %Tsnvhe"H? e 1<m<n—1.
Then it follows that
C(lle" M Zs + e 2I7a + 0™ HTs + 0" 2(170) €™ (176

1
< gTsHVhe"\P + |le™||?, (3.55)
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and
C (I 3+ ™23 + e 15+ le™ 2 15a) I
< Sl I + P (3.56)
Applying (3.55) into (3.34) yields
%Dﬁ‘\lenll2 < C (e P+ e 21+ 1™+ [l 2)7) + Clle™ |1
P IR el + 57 Vne (3.57)
and applying (3.56) into (3.40) similarly yields
%Dan"HZ < C (I A+ 202 4 e M+ llem=2)%) + Clln™ |1
+ (1Q% I+ ) [l + %TsHV/m"HZ- (3.58)
It can be further inferred from (3.55) that
C(lle" M Zs + e 2I7 + ™ T + 0" 70) lle™ (|76 < %HWB"II2 +[le”|?,
C (" HZs + 0" 217 + lle" M Zs + e 2I7a) In" 76 < %HVW”II2 + [l 2.
Then the Egs. (3.46) and (3.47) can be estimated as
7ol Vre™ |2 < mll TT W€+ 7s (1P 4 17 1) e
7o (Clle 2 + € (e 112 + €212 + ™12 + 1" 21%) )
wr (GIThe I+ el?)
Tl V™12 < Tl T3 ™ [+ 7 (1Q™ 1+ (I3 11) 1"
7 (Cl 12+ € (M2 + =2 + e 12 + e %)) )
wo (GIVa I+ )
Combining with (3.43) and (3.44), it implies that
%TsHVhe”II2 < 7l 7 (1P I lle™ |
7 (Clle I 4+ O (e 2+ e 2 2 + 2+ [ 2)12) ), (3.59)
%TSHVW"HZ < 727l s Q™+ I3 D ™ |

7 (Cln I+ C (I~ 2 =22 + e 2 + e %)12) ). (3.60)
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Summing (3.59)-(3.60) and (3.57)-(3.58) together, respectively. Then adding the
two equations together, we obtain
D2 (™1 + lln"1I*)

<ACL+75) ([l HP + e 2117 + ™M1 + [l ~2)1%)
+20(L+ 1) ([le"]* + " 1)
+2 ()P ) +737%) e
+2 (X +m)(Q7 I+ 73 1) +7572) "

< 8C ([le" M+ e 212 + ™M1 + "2 (1) +4C(le™ 1 + 1™ 1%)

A (1P + I+ 1@+ g+ 727) Ve 2 + [l ]2

By using Lemma 3.7 and (2.14) again, we can similarly conclude that
eI + "] < € (7272 + h?)?, (3.61)

when under the circumstance 7, < min{Ts(Q), 1}.

Then combining (2.14), (3.43), (3.52), (3.26) and Lemma 3.5, (3.59) can be de-
rived to ,
TSHVhenHz <C (7'3270‘ + h2) ,

and (3.60) can be similarly deduced as
Va2 < C (727 + 1%)°,
The result of inequality (3.26) is proved in this case.

Setting 7 = min{Ts(l) ) Té@ }. Up to now, we have proved that (3.26) holds for m = n
when h < hy and 75 < 7. We complete the induction.

For the other condition, when
T+ h > Oy
for some positive constant C}, -, by applying Lemma 3.4, we can get
1@ — o+ [[a" - V™|

< @ + 100+ [12°) + 1Vl

2 1 1O+ 20+ VOl
- Ch,’r

(7'3270‘ + h2) .

Setting . .
C* = max { K1, (@] + [|U°]] + [|2° + [V°1)/Chr }

finishes the proof of Theorem 2.1. O
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4. An alternative approach to error analysis

In this section, we get the unconditional convergence results by using the so-called
temporal-spatial splitting method. We present a routing way to obtain the uncon-
ditional convergence results. To show the idea conveniently, here the spatial dis-
cretization is done by using the finite element methods. Let P, be a quasiuniform
partition of € into triangles 7z (1 < k < M) in R? or tetrahedra in R3. Denote
hre = maxi<k<p{diam7} as the spatial mesh size. Let S}, be the finite-dimensional
subspace of H{(Q), which consists of continuous piecewise polynomials of degree
r (r>1)on P.

The temporal discretization still employs the transformed L1 scheme. We divided
the interval [0,7“] into N equal subintervals with time step 7, = 7%/N and let s,, =
nts. Denote 4" = u(Z,s,) and 0" = 0(Z, s,), 0 < n < N, which are the exact solu-
tions after the change of variable ¢ = s'/®. With above definitions and notations, the
transformed L1-Galerkin FEM is to seek (U,?, Vh") € Sy, x Sy, such that

i(DSUITLL7W1h) - (VhU]ZL, VW1h) + (fl(U}?a th)U}?awlh) = 0) 1 S n S Na (41)
D2V wop) — (VRV, Vwar) + (fo(UR, ViVt wop) =0, 1<n< N  (4.2)

for any (wyp,wap) € Sk X Sp, where f],% = Ry, Vhl = Rp?y with R, being the usual
Ritz projection operator, and

Up =20y =072, V=20 =V 2 n>2.

We can obtain the unconditional convergence results for the proposed transformed
L1-Galerkin FEM scheme (4.1)-(4.2).

Theorem 4.1. Suppose that system (2.1)-(2.2) admits a unique solution (i, 7)€ [H™1()
N HE(Q))? satisfying (2.3)-(2.4). Then the proposed r-degree finite element scheme (4.1)-
(4.2) admits a unique solution (U}',V}"),n =1,2,..., N, satisfying

. = - - _ 2
@™ = Up e + 18" = Vitl7: < CF (73 +hily)", 1<n<N, r=12
where C} is a positive constant independent of 7 and hrp.

Now, we follow the proof the unconditional convergent results in [25] and show
the main idea to get the results. First, let (U", V"), n = 1,2,..., N be the numerical
solutions for the time semi-discrete system

DU + AU + f(U", V" U" =0, 1<n<N, (4.3)
DIV + AV™ + fo(U", V")V =0, 1<n<N, (4.4)

where U! = ¢%, V1! = 9, and

Ur =207t —0r2 VvVr=20"l_Vr2 >0



24 M. Li et al.

One can show that the time-discrete system defined in (4.3)-(4.4) has a unique solution
(U™ V™), n=1,2,...,N. And there exists 7* > 0 such that when 7, < 7%,
@™ — U™ g2 + ||0" = V|2 < 727%, 1<n <N, (4.5)
1T [Loe + [Vl < 2K, 1<n<N, (4.6)
where K is a positive constant independent of 74 and n. Thanks to boundedness of

HﬁnHLoo and anHLoo, we can obtain that maxi<p<N HRhUnHLoo —l—maxlgnSN HthnHLoo
is bounded. Then we can define

_ rrn Va0
K3 = max |[RpU"|re + max [[RnV" L + 1.

We present a primary error estimates~of ﬁhﬁ n_U ' and R,V™ — f/h”, then prove
the boundedness of numerical solution (U, V}'') in L*°-norm unconditionally, i.e., the
proposed r-degree finite element scheme (4.1)-(4.2) admits a unique solution (U}, V;*),

n = 1,2,...,N. Moreover, there exists 77 > 0 and A* > 0 such that when 7, < 77,
hre < h*,
IRRU™ = Ul 2 + IRAV"™ = Vil g2 < W, 1<n <N, 4.7)
1O lzoe + Vit e < 2K, 1<n<N, (4.8)

where « is a constant satisfies 3/2 < k < 2.

According to the boundedness of the finite element numerical solution (U7, V;*),
we then can provide error estimates for the fully-discrete system unconditionally. We
can eventually get a complete proof of the Theorem 4.1.

5. Numerical experiments

In this section, we carry out several numerical examples to confirm our theoretical
results in the paper. All computations are performed with Matlab. Throughout the
experiments, the spatial domain is divided into M parts in every direction uniformly,
that is, in the multi-dimensional cases, we set h; = L;/M =: h,i = 1,...,d. The time
interval [0,7¢] is also divided uniformly into NV parts, 7, = 7“/N. Then we use the
discrete L?-norm to measure the global error of the scheme, namely,

Ey(M,N) = |UY —w(T)llp2,  Bo(M,N) = [V —o(T)| 2.

Example 5.1. We consider the following TF-CNLS system:

i0fu + Au+ (Jul* + Bl )u=fi, 2€Q, 0<t<T, (5.1)
i0fv + Av + (|v|2 + ﬁ|u|2) v=1[fa, €0, 0<t<T, (5.2)
u(z,0) = up(z), v(z,0)=vo(z), =z€Q, (5.3)

Ulyeo0 =0, v|co0 =0, (5.4
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where g =1, Q = [0,1] x [0,1], (f1, f2) and (ug, vg) are chosen correspondingly to the
exact solutions given by

u(z,t) = 3(t* +t2)(1 — z1)(1 — x2) sin 21 sin 2o,

v(x,t) = t*sin(mzy) sin(mxs).

The global errors in the terminal time 7" = 1 are listed in Table 1. To evaluate
the accuracy in the spatial direction, we fix N = 1000. The numerical results with
various « are provided in Table 1, which indicates the scheme can have a second-
order convergence rate in space. To test the accuracy in the temporal direction, we
take h = 7.2~*/% such that the spatial error bound in L?-norm is proportional to the
temporal error of 72-“. The convergence orders with different o are shown in Table 2.
The results are found to be the desired temporal order of convergence 2 — «, which
confirms our theoretical analysis in previous section. We also test our scheme with
h = 1/40 and large time steps 7, = h,5h,10h and present error results in Table 3.
Numerical results show that the proposed scheme is stable for the large time steps.

In order to confirm the unconditional convergence of the proposed method, we
solve the system with different stepsizes. The numerical results can be seen in Fig. 1.
These results imply that for each fixed 7, the error tends to be a constant. It implies
that the errors hold without any time-step restrictions dependent on the spatial mesh
size.

Table 1: Spatial convergence rates with N = 1000 for Example 5.1.

M a=0.3 a=0.5 a=0.7
E.,(M,N) | order(u) | E,(M,N) | order(u) | E,(M,N) | order(u)
10 | 3.97e-04 * 3.97e-04 * 3.96e-04 *

20 | 9.87e-05 2.01 9.87e-05 2.01 9.86e-05 2.01
30 | 4.38e-05 2.00 4.38e-05 2.00 4.38e-05 2.00
40 | 2.46e-05 2.00 2.46e-05 2.00 2.46e-05 2.00
50 | 1.57e-05 2.01 1.57e-05 2.00 1.57e-05 2.00
M | E,(M,N) | order(v) | E,(M,N) | order(v) | E,(M,N) | order(v)
10 | 4.55e-03 * 4.55e-03 * 4.55e-03 *

20 | 1.13e-03 2.01 1.13e-03 2.01 1.13e-03 2.01
30 | 5.03e-04 2.00 5.03e-04 2.00 5.03e-04 2.00
40 | 2.82e-04 2.00 2.83e-04 2.00 2.83e-04 2.00
50 | 1.81e-04 2.00 1.81e-04 2.00 1.81e-04 2.00

Example 5.2. Consider the TF-CNLS equations (5.1)-(5.4) in three-dimensional space,
where g = 1.5, Q2 = [0,1] x[0,1] x[0,1], (f1, f2) and (ug, v9) are chosen correspondingly
to the exact solutions given by

u(z,t) = 60(t* 4+ t2)(1 — 21)(1 — 29)(1 — x3) sin x1 sin x5 sin x3,

v(x,t) = t*sin(mxq) sin(mxs) sin(mxs).
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Table 2: Temporal convergence rates with M = [N>~*)/] for Example 5.1.

N a=04 a=0.6 a=0.28
E.(M,N) | order(u) | E,(M,N) | order(u) | E,(M,N) | order(u)
20 2.62e-04 * 5.73e-04 * 1.07e-03 *

40 9.25e-05 1.50 2.23e-04 1.36 4.79e-04 1.16
80 | 3.22e-05 1.52 8.70e-05 1.36 1.99¢-04 1.27
160 | 1.08e-05 1.57 3.17e-05 1.46 8.89e-05 1.16
N | E,(M,N) | order(v) | E,(M,N) | order(v) | E,(M,N) | order(v)
20 | 3.53e-03 * 6.98e-03 * 1.27e-02 *

40 1.19e-03 1.57 2.65e-03 1.40 5.60e-03 1.18
80 4.00e-04 1.58 1.02e-03 1.38 2.31e-03 1.28
160 | 1.30e-04 1.62 3.67e-04 1.47 1.03e-03 1.17

Table 3: Numerical results of Example 5.1 with § =1 and h = 1/40.

a=0.3 a=05 a=0.7
E.,M,N) | E,(M,N) | E,(M,N) | E,(M,N) | E,(M,N) | E,(M,N)
Ty = 2.7941e-05|1.9596e-04 | 3.4984e-05|2.3575e-04 | 5.3212e-05 | 2.4826e-04

Ts = bh |5.0139e-04 | 9.3403e-04 | 4.4858e-04 | 6.3716e-04 | 4.8176e-04 | 4.9059¢-04
7s = 10h|1.3047e-03 | 2.9126e-03 | 1.2905e-03 | 2.6391e-03 | 1.3380e-03 | 2.4283e-03

102
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+ 7521/20 10,2 + TS:]./ZO
— == 7.=1/30 — == 7,=1/30
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Figure 1: L2-error of E, and E, for Example 5.1 with =1, a =0.2.

To verify our theoretical results, we solve the three-dimensional problem by taking
different values in the spatial discretization with fixed 7;,. The parameters are set as
= 1.5and a = 0.6. As can be seen in the Fig. 2, the L?-errors of E, and E, both still
converge to a constant for a fixed 75, which shows that the scheme is unconditionally
convergent without any time-step restrictions.
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Figure 2: L2-error of E, and E, for Example 5.2 with 3 = 1.5, o = 0.6.

6. Conclusions

In this paper, we mainly proposed a transformed L1 semi-implicit finite difference
method for the time-fractional coupled nonlinear Schrédinger system. The scheme
combines the change of variable and the finite difference method. The unique solvabil-
ity and the unconditionally optimal error estimate of the scheme are further discussed.
This method takes the initial singularity into account. We also present a routing way
which is the so-called temporal-spatial splitting method to obtain the unconditional
convergence results. Both the methods show that the scheme can have (2 — «)-th or-
der convergence in temporal direction. Several numerical examples are performed to
support the theoretical results in the paper.
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