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Abstract. This paper presents a transformed L1 (TL1) finite difference method for

the time-fractional coupled nonlinear Schrödinger system. Unconditionally optimal
L2 error estimates of the fully discrete scheme are obtained. The convergence re-

sults indicate that the method has an order of 2 in the spatial direction and an
order of 2 − α in the temporal direction. The error estimates hold without any

spatial-temporal stepsize restriction. Such convergence results are obtained by ap-

plying a novel discrete fractional Grönwall inequality and the corresponding Sobolev
embedding theorems. Numerical experiments for both two-dimensional and three-

dimensional models are carried out to confirm our theoretical findings.
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1. Introduction

This paper mainly focuses on constructing and analyzing a transformed L1(TL1)

linearized finite difference scheme for solving the time-fractional coupled nonlinear
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Schrödinger (TF-CNLS) system

i∂α
t u+∆u+ f1(u, v)u = 0, x ∈ Ω, 0 < t ≤ T, (1.1)

i∂α
t v +∆v + f2(u, v)v = 0, x ∈ Ω, 0 < t ≤ T, (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)

u(x, t) = 0, v(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ], (1.4)

where i =
√
−1, Ω = [0, L1] × · · · × [0, Ld] ∈ Rd (d ≥ 1) is a bounded convex and

smooth polygon/polyhedron. f1(u, v) and f2(u, v) are nonlinear functions. u(x, t) and

v(x, t) are space-time dependent complex valued functions describing envelopes of two

polarized optical wave packets, which are defined in Ω × [0, T ]. Here ∂α
t denotes the

Caputo fractional time derivative,

∂α
t u(t) =

1

Γ(1− α)

∫ t

0

∂u(x, z)

∂z

1

(t− z)α
dz, 0 < α < 1

with Γ(·) being the usual Gamma function. Since this system of fractional partial dif-

ferential equations can describe nonlocality behaviors exactly, it is usually used to ex-

plain many physical phenomena, such as quantum dynamics. It is challenging to ade-

quately capture nonlocality behaviors when modeling within the framework of classi-

cal integer-order calculus [9, 45]. Moreover, it includes some important variants. For

instance, when α tends to 1, the system would converge to the classical coupled nonlin-

ear Schrödinger (CNLS) equations. The TF-CNLS equations have numerous significant

industrial applications, including beam propagation in Kerr-like photorefractive me-

dia, multi-component Bose-Einstein condensates, rogue waves on a multi-soliton back-

ground, and description of coupled modes in birefringent media or pulse propagation

in multimode fibers [10,12,20,34,38,51].

Generally speaking, the solutions of the time-fractional problems have certain initial

layers. To describe the initial singularities, it is typically assumed that problem (1.1)-

(1.4) owns unique solutions u, v satisfying [19,42,44]

∥

∥

∥

∥

∂lu

∂tl

∥

∥

∥

∥

≤ Cu(1 + tα−l), l = 1, 2, 0 < t ≤ T,

∥

∥

∥

∥

∂lv

∂tl

∥

∥

∥

∥

≤ Cv(1 + tα−l), l = 1, 2, 0 < t ≤ T,

where Cu and Cv are positive constants independent of t and the domain Ω. Up to

now, there are many methods to deal with the singularity of fractional derivatives.

For instance, Hou and Xu [14] introduced a new class of generalized fractional Jacobi

polynomials, and then formulate Galerkin and Petrov-Galerkin spectral methods. More

related works by using spectral methods could be seen in [29, 32]. Besides, Jin [18]

showed some high-order BDF convolution quadrature methods and more works we

refer readers to [8, 49]. In addition, there are finite difference methods on the non-

uniformed meshes [6, 30, 43, 50, 53], L2 − 1σ scheme [1, 56, 57] and the transformed
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L1 method [25–27]. We also recommend [2,23,33,36,47,48,55] to readers for other

efficient works.

In the past several years, many numerical results have been done for the related

models. Bhrawy [4] applied a new Jacobi spectral collocation method for solving the

TF-CNLS system. Hendy [13] constructed a L1-Galerkin spectral scheme for coupled

nonlinear space-time fractional Schrödinger equations. Li [28] employed a fast lin-

earized conservative finite element method for the TF-CNLS equations. Qin [40] pro-

posed an Alikhanov linearized Galerkin finite element method for the TF-NLS equa-

tions. More details on the time-fractional partial differential equations can be found

in [7,15–17,35,37,52].

It is noted that the early error estimates for the high-dimensional nonlinear prob-

lems are usually obtained under a certain space-time step-restriction of τ = O(hd/(2p)),
where d is the dimension, τ is the temporal step size, h is the spatial mesh size and p
denotes the temporal convergence order. Such space-time step-restriction is required

in the error analysis but unnecessary in the actual computation, see e.g., [3, 11, 54].

In order to remove the restriction, a temporal-spatial error splitting approach was sug-

gested in [21, 22]. This yields the so-called unconditional error analysis for the high-

dimensional nonlinear time-dependent problems. The approach was also widely used

to obtain the optimally unconditional error estimates of different schemes for time frac-

tional problems, see e.g., [25–27,31,41].

In this paper, we follow the ideas in [24,39] and introduce the following change of

variable:

tα = s,

we arrive at an equivalent time re-scaled s-fractional differential equation. Then, the

temporal discretization is achieved by using the transformed L1 scheme and the extrap-

olated methods, taking the initial singularity into account. The fully-discrete scheme is

developed, with the spatial discretization done using the central finite difference meth-

ods. The scheme is quite effective for different parameters α in both two and three

dimensional cases. Then, the optimally unconditional convergence results of the fully-

discrete scheme are obtained. The results indicate that the optimal L2 error estimates

hold without any spatial-temporal stepsize restrictions, i.e., τ = O(hc) for a positive

constant c.

The proof of unconditional convergence results consist of two parts. Firstly, we

show the results hold for the following special case, i.e.,

f1(u, v) = |u|2 + β|v|2, f2(u, v) = |v|2 + β|u|2, (1.5)

where β is a given constant denoting the wave-wave interaction coefficient character-

izing the cross-phase modulation of wave packets. In such a case, the unconditional

convergence analysis is proved rigorously by using the corresponding Sobolev embed-

ding theorems and a new discrete fractional Grönwall inequality. Secondly, we show

that the unconditional results hold for the equations with the general nonlinear terms
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f1(u, v) and f2(u, v). To the end, we introduce the so-called temporal-spatial error split-

ting approach. We provide a routing way to get the optimal unconditional convergence

results of the fully-discrete schemes.

The rest of the paper is organized as follows. In Section 2, we present a trans-

formed L1 implicit scheme and the main results. In Section 3, by introducing some

notations and lemmas, we give a complete proof of the main results. In Section 4, we

present a routing way to obtain the unconditional convergence results. In Section 5,

we present several numerical experiments to confirm our theoretical results. Finally,

some conclusions are given in Section 6.

Throughout the paper, we let C be a positive constant that is independent of the

mesh sizes and may be different in different places.

2. Derivation of the transformed L1 scheme

In this section, we first transform system (1.1)-(1.4) into an equivalent form by

introducing the change of variable t = s1/α. Then we apply the classical L1 scheme and

the finite difference method to the resulting problem, which gives the transformed L1

scheme.

Inspired by the recent research work in [24,39], we introduce the change of variable

t = s1/α. Denote

ũ(x, y, s) = u
(

x, y, s1/α
)

, ṽ(x, y, s) = v
(

x, y, s1/α
)

and then obtain

∂α
t u =

1

Γ(1− α)

∫ t

0

∂u(r)

∂r

1

(t− r)α
dr

=
1

Γ(1− α)

∫ s

0

∂ũ(r)

∂r

1

(s1/α − r1/α)α
dr =: Dα

s ũ,

∂α
t v =

1

Γ(1− α)

∫ t

0

∂v(r)

∂r

1

(t− r)α
dr

=
1

Γ(1− α)

∫ s

0

∂ṽ(r)

∂r

1

(s1/α − r1/α)α
dr =: Dα

s ṽ.

The system (1.1)-(1.2) can be transformed into the following equivalent form:

iDα
s ũ+∆ũ+ f1(ũ, ṽ)ũ = 0, x ∈ Ω, 0 < s ≤ Tα, (2.1)

iDα
s ṽ +∆ṽ + f2(ũ, ṽ)ṽ = 0, x ∈ Ω, 0 < s ≤ Tα. (2.2)

Similar to the theoretical analysis in [24,39], it is reasonable to assume problem (2.1)-

(2.2) admits unique solutions satisfying
∥

∥

∥

∥

∂lũ

∂sl

∥

∥

∥

∥

≤ C∗
(

1 + s1/α+1−l
)

, l = 1, 2, 0 < s ≤ Tα, (2.3)

∥

∥

∥

∥

∂lṽ

∂sl

∥

∥

∥

∥

≤ C∗
(

1 + s1/α+1−l
)

, l = 1, 2, 0 < s ≤ Tα, (2.4)
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where ‖ · ‖ denotes the usual L2-norm and C∗ is a positive constant independent of s
and domain Ω.

Let hi = Li/Mi, i = 1, . . . , d be the spatial stepsizes with given positive integers

Mi, i = 1, . . . , d. The spatial mesh is defined as Ωh = {(x1,j1 , · · · , xd,jd) | xi,ji =
jihi; 0 ≤ ji ≤ Mi, i = 1, . . . , d}. Let N be a positive integer and {sn := nτs}Nn=0 be the

uniform partition of the interval [0, Tα] with τs = Tα/N . Denote the temporal mesh

Ωτ = {sn | 0 ≤ n ≤ N}. Then we define two grid functions on Ωhτ = Ωh × Ωτ , that is,

{Ũn
j1,··· ,jd

, Ṽ n
j1,··· ,jd

| 0 ≤ jr ≤ Mr, 0 ≤ n ≤ N ; r = 1, . . . , d; d ≥ 1}. Moreover, we denote

Jh = {(j1, · · · , jd) | 0 ≤ ji ≤ Mi, i = 1, . . . , d},
J

′

h = {(j1, · · · , jd) | 1 ≤ ji ≤ Mi − 1, i = 1, . . . , d},
J

′′

h = {(j1, · · · , jd) | 0 ≤ ji ≤ Mi − 1, i = 1, . . . , d}.
Before presenting the scheme, several definitions and notations are introduced below

∇hU
n
~j
=

(

1

h1

[

Un
j1+1,··· ,jd

− Un
j1,··· ,jd

]

, · · · , 1

hd

[

Un
j1,··· ,jd+1 − Un

j1,··· ,jd

]

)

,

∆hU
n
~j
= ∇h

(

∇hU
n
j1−1,··· ,jd−1

)

,

where ~j = (j1, · · · , jd).
For Un, V n ∈ Ωh, we define the inner product

〈Un, V n〉 = h∆
∑

~j∈J
′

h

Un
~j
V̄ n
~j
,

and some norms

‖Un‖2 = 〈Un, Un〉, ‖Un‖Lp =

(

h∆
∑

~j∈J
′

h

|Un
~j
|p
)1/p

,

‖∇hU
n‖ =

(

h∆
∑

~j∈J
′′

h

|∇hU
n
~j
|2
)1/2

, ‖Un‖L∞ = max
~j∈J

′

h

|Un
~j
|,

where V̄ n
~j

denotes the conjugate of V n
~j

and h∆ = h1 · · · hd.

Now, we are ready to construct the fully-discrete numerical scheme for problem

(2.1)-(2.2). We apply the transformed L1 numerical scheme to approximate the s-

fractional differential operator Dα
s ũ, which yields

Dα
snũ =

1

Γ(1− α)

∫ sn

0

∂ũ(r)

∂r

1

(s
1/α
n − r1/α)α

dr

=
1

Γ(1− α)

n
∑

j=1

ũ(sj)− ũ(sj−1)

τs

∫ sj

sj−1

1

(s
1/α
n − r1/α)α

dr + γn1

=

n
∑

j=1

an,n−j

[

ũ(sj)− ũ(sj−1)
]

+ γn1
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= an,0ũ(sn) +

n−1
∑

j=1

(an,n−j − an,n−j−1)ũ(sj)− an,n−1ũ(s0) + γn1 , (2.5)

a similar estimate for Dα
s ṽ yields

Dα
sn ṽ = an,0ṽ(sn) +

n−1
∑

j=1

(an,n−j − an,n−j−1)ṽ(sj)− an,n−1ṽ(s0) + γn2 (2.6)

with γn1 , γn2 being the temporal truncation errors. The coefficients an,n−j in (2.5) and

(2.6) are defined as

an,n−j =
1

τsΓ(1− α)

∫ sj

sj−1

1

(s
1/α
n − r1/α)α

dr

=
α

τsΓ(1− α)

∫ tj

tj−1

1

(tn − t)αt1−α
dt, tj = s

1/α
j .

It can be further converted into

an,n−j =
α

τsΓ(1− α)

∫ tj/tn

tj−1/tn

1

(1− z)αz1−α
dz

=
α

τsΓ(1− α)

(

B(tj/tn, α, 1 − α)−B(tj−1/tn, α, 1 − α)
)

, (2.7)

where B(z, α, 1 − α) is the usual incomplete Beta function, i.e.

B(z, a, b) =

∫ z

0
xa−1(1− x)b−1dx.

According to (2.5) and (2.6), we can define the following discrete fractional operator:

Dα
τ ξ

n = an,0ξ
n −

n−1
∑

j=1

(an,n−j−1 − an,n−j)ξ
j − an,n−1ξ

0, (2.8)

where {ξn}Nn=0 is a sequence of functions.

Let (u, v) be the solution of the time-fractional coupled nonlinear Schrödinger sys-

tem (1.1)-(1.4), we denote

ũn~j = ũ(x~j , sn) = u
(

x~j, s
1/α
n

)

, ṽn~j = ṽ(x~j , sn) = v
(

x~j , s
1/α
n

)

be the solutions of the transformed equivalent system (2.1)-(2.2). Let {Ũn
~j
, Ṽ n

~j
} be

numerical approximation to {ũn~j , ṽ
n
~j
}.

With above definitions and notations, the solution (ũ, ṽ) of the system (2.1)-(2.2)

satisfies the finite difference equations

iDα
τ ũ

n
~j
+∆hũ

n
~j
+ Ĝn(ũ~j, ṽ~j)ũ

n
~j
= Pn

~j
+ γn

1~j
, ~j ∈ J

′

h, 2 ≤ n ≤ N, (2.9)

iDα
τ ṽ

n
~j
+∆hṽ

n
~j
+ Ĝn(ṽ~j , ũ~j)ṽ

n
~j
= Qn

~j
+ γn

2~j
, ~j ∈ J

′

h, 2 ≤ n ≤ N, (2.10)
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where

Ĝn(ũ, ṽ) = 2
(

|ũn−1|2 + β|ṽn−1|2
)

−
(

|ũn−2|2 + β|ṽn−2|2
)

(2.11)

is a standard extrapolation approximation with the case (1.5), and the definition of the

operator Dα
τ mentioned above is given in (2.8).

At the initial step n = 1, it holds

iDα
τ ũ

1
~j
+∆hũ

1
~j
+
(

|ũ0~j |
2 + β|ṽ0~j |

2
)

ũ1~j = P 1
~j
+ γ1

1~j
, ~j ∈ J

′

h, (2.12)

iDα
τ ṽ

1
~j
+∆hṽ

1
~j
+
(

|ṽ0~j |
2 + β|ũ0~j |

2
)

ṽ1~j = Q1
~j
+ γ1

2~j
, ~j ∈ J

′

h, (2.13)

where Pn
~j

, Qn
~j

, γn
1~j

, γn
2~j

are the truncation errors, which are satisfying

γn
1~j

= i
(

Dα
τ ũ

n
~j
−Dα

s ũ(x~j, sn)
)

, 1 ≤ n ≤ N,

γn
2~j

= i
(

Dα
τ ṽ

n
~j
−Dα

s ṽ(x~j , sn)
)

, 1 ≤ n ≤ N,

Pn
~j

= ∆hũ
n
~j
−∆ũ(x~j , sn) + Ĝn(Ũ , Ṽ )ũn~j

−
(

|ũ(x~j , sn)|
2 + β|ṽ(x~j , sn)|

2
)

ũ(x~j , sn), 2 ≤ n ≤ N,

Qn
~j
= ∆hṽ

n
~j
−∆ṽ(x~j, sn) + Ĝn(ṽ, ũ)ṽn~j

−
(

|ṽ(x~j, sn)|
2 + β|ũ(x~j , sn)|

2
)

ṽ(x~j , sn), 2 ≤ n ≤ N,

P 1
~j
= ∆hũ

1
~j
−∆ũ(x~j , s1) +

(

|ũ0~j |
2 + β|ṽ0~j |

2
)

ũ1~j

−
(

|ũ(x~j , s1)|
2 + β|ṽ(x~j , s1)|

2
)

ũ(x~j , s1),

Q1
~j
= ∆hṽ

1
~j
−∆ṽ(x~j , s1) +

(

|ṽ0~j |
2 + β|ũ0~j |

2
)

ṽ1~j

−
(

|ṽ(x~j , s1)|
2 + β|ũ(x~j , s1)|

2
)

ṽ(x~j , s1).

By Taylor formula, we can easily obtain

‖Pn‖2 ≤ C(τ2s + h2)2, ‖Qn‖2 ≤ C(τ2s + h2)2, 2 ≤ n ≤ N, (2.14)

‖P 1‖2 ≤ C(τs + h2)2, ‖Q1‖2 ≤ C(τs + h2)2 (2.15)

with C a positive constant that is independent of hi, i = 1, . . . , d, (d ≥ 1) and τs, where

h = maxi hi.
Omitting the truncation errors Pn

~j
, Qn

~j
, γn

1~j
, γn

2~j
in (2.9)-(2.10) and (2.12)-(2.13),

the transformed L1 finite difference scheme for system (2.1)-(2.2) reads

iDα
τ Ũ

n
~j
+∆hŨ

n
~j
+ Ĝn(Ũ , Ṽ )Ũn

~j
= 0, ~j ∈ J

′

h, 2 ≤ n ≤ N, (2.16)

iDα
τ Ṽ

n
~j

+∆hṼ
n
~j

+ Ĝn(Ṽ , Ũ)Ṽ n
~j

= 0, ~j ∈ J
′

h, 2 ≤ n ≤ N, (2.17)

iDα
τ Ũ

1
~j
+∆hŨ

1
~j
+
(

|Ũ0
~j
|2 + β|Ṽ 0

~j
|2
)

Ũ1
~j
= 0, ~j ∈ J

′

h, (2.18)

iDα
τ Ṽ

1
~j
+∆hṼ

1
~j
+
(

|Ṽ 0
~j
|2 + β|Ũ0

~j
|2
)

Ṽ 1
~j

= 0, ~j ∈ J
′

h, (2.19)
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subject to

Ũn
~j
|~j∈∂Jh = Ṽ n

~j
|~j∈∂Jh = 0, 1 ≤ n ≤ N, (2.20)

Ũ0
~j
= u0(x~j), Ṽ 0

~j
= v0(x~j),

~j ∈ Jh. (2.21)

As can be seen, the solution {Ũn
~j
, Ṽ n

~j
|~j ∈ J

′

h, 2 ≤ n ≤ N} at each time step can be

calculated by solving two uncoupled linear systems (2.16) and (2.17), and the solution

{Ũ1
~j
, Ṽ 1

~j
|~j ∈ J

′

h} can be obtained by solving the systems (2.18) and (2.19). We present

the unconditional convergence results of the proposed scheme (2.16)-(2.21) in the

following theorem. The proof will be left in the next section.

Theorem 2.1. Suppose that system (2.1)-(2.2) admits a unique solution (ũ, ṽ) satisfying

(2.3)-(2.4). Then the finite difference scheme defined in (2.16)-(2.21) admits a unique

solution and

‖en‖2 + ‖ηn‖2 ≤ C∗
0

(

τ2−α
s + h2

)2
, 1 ≤ n ≤ N, (2.22)

where the error functions are defined by

en~j = ũn~j − Ũn
~j
, ηn~j = ṽn~j − Ṽ n

~j
, ~j ∈ Jh, 0 ≤ n ≤ N, (2.23)

and C∗
0 is a positive constant independent of τs and h.

Remark 2.1. The error estimate (2.22) for high-dimensional nonlinear TF-CNLS sys-

tems holds without certain spatial-temporal stepsize restrictions, e.g., τ = O(hc) for

a positive constant c.

3. Proof of the main results

In this section, the unique solvability and unconditional convergence analysis of the

proposed scheme are proved.

3.1. Existence and uniqueness of the scheme

To show the existence of the approximations {(Ũn, Ṽ n) | 1 ≤ n ≤ N} for scheme

(2.16)-(2.21), we shall use the following Brouwer-type theorem and some important

lemmas below.

Lemma 3.1 ([39, Lemma 3.1]). For n ≥ 1, it holds that

0 ≤ an,n−1 ≤ an,n−2 ≤ · · · ≤ an,0.

Lemma 3.2 ([52, Lemma 3.2]). For n ≥ 2, it holds that

an,0 ≤
2α+1/α−2τ−1

s

α1−αΓ(2− α)
.
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Lemma 3.3 ([5]). Let (H, 〈·, ·〉) be a finite dimensional inner product space, ‖ · ‖ be the

associated norm, and let g : H → H be continuous. Assume, moreover, that

∃ϑ > 0, ∀z ∈ H, ‖z‖ = ϑ, ℜ〈g(z), z〉 ≥ 0.

Then, there exists an element z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ ≤ ϑ.

Let

Θ =
{

v = (v1, v2) = (v1~j , v2~j) |~j ∈ Jh
}

and define

〈v, v′〉 =
〈

(v1, v2), (v
′

1, v
′

2)
〉

= 〈v1, v
′

1〉+ 〈v2, v
′

2〉,
‖v‖2 = ‖v1‖2 + ‖v2‖2.

With the above lemmas and denotations, we can get the unique solvability of the

proposed scheme, see Theorem 3.1.

Theorem 3.1. The scheme (2.16)-(2.21) is uniquely solvable.

Proof. First, we show the unique solvability of the scheme holds for n = 1. In fact,

the existence and uniqueness of the finite difference solution can be obtained by the

decaying mass, which is proved later (in Lemma 3.4).

For the case 2 ≤ n ≤ N , we prefer another way to get the results. According to

(2.8), the scheme (2.16)-(2.17) can be rewritten as

ian,0Ũ
n
~j
−

n−1
∑

k=1

i(an,n−k−1 − an,n−k)Ũ
k
~j
− ian,n−1Ũ

0
~j

+∆hŨ
n
~j
+ Ĝn(Ũ , Ṽ )Ũn

~j
= 0, ~j ∈ Jh,

ian,0Ṽ
n
~j

−
n−1
∑

k=1

i(an,n−k−1 − an,n−k)Ṽ
k
~j
− ian,n−1Ṽ

0
~j

+∆hṼ
n
~j

+ Ĝn(Ṽ , Ũ)Ṽ n
~j

= 0, ~j ∈ Jh.

We first prove the existence of the numerical solution to the scheme. Let ω = (ω1, ω2) ∈
Θ and define the map g = (g1, g2) on Θ as follows:

g1(ω) = ω1 −
i

an,0
∆hω1 −

i

an,0
Ĝ(Ũ , Ṽ )ω1

−
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ũk − an,n−1

an,0
Ũ0, (3.1)

g2(ω) = ω2 −
i

an,0
∆hω2 −

i

an,0
Ĝ(Ṽ , Ũ )ω2

−
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ṽ k − an,n−1

an,0
Ṽ 0. (3.2)
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Multiplying both sides of Eqs. (3.1) and (3.2) with ω1~j and ω2~j respectively, summing

them over Ωh, then taking the real part of the results, we obtain

ℜ 〈g1(ω), ω1〉 = ‖ω1‖2 −
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
ℜ
〈

Ũk, ω1

〉

− an,n−1

an,0
ℜ
〈

Ũ0, ω1

〉

,

ℜ 〈g2(ω), ω2〉 = ‖ω2‖2 −
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
ℜ
〈

Ṽ k, ω2

〉

− an,n−1

an,0
ℜ
〈

Ṽ 0, ω2

〉

.

By using Lemma 3.1, we then get

ℜ 〈g(ω), ω〉 = ℜ 〈g1(ω), ω1〉+ ℜ 〈g2(ω), ω2〉

≥ ‖ω1‖2 −
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
‖Ũk‖ ‖ω1‖ −

an,n−1

an,0
‖Ũ0‖ ‖ω1‖

+ ‖ω2‖2 −
n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
‖Ṽ k‖ ‖ω2‖ −

an,n−1

an,0
‖Ṽ 0‖ ‖ω2‖

≥ ‖ω1‖2 −
1

2an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k)
(

‖Ũk‖2 + ‖ω1‖2
)

− an,n−1

2an,0

(

‖Ũ0‖2 + ‖ω1‖2
)

+ ‖ω2‖2

− 1

2an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k)
(

‖Ṽ k‖2 + ‖ω2‖2
)

− an,n−1

2an,0

(

‖Ṽ 0‖2 + ‖ω2‖2
)

=
1

2

(

‖ω1‖2 + ‖ω2‖2
)

− 1

2an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k)
(

‖Ũk‖2 + ‖Ṽ k‖2
)

− an,n−1

2an,0

(

‖Ũ0‖2 + ‖Ṽ 0‖2
)

=
1

2

(

‖ω‖2 − 1

an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k) ‖(Ũk, Ṽ k)‖2 − an,n−1

an,0
‖(Ũ0, Ṽ 0)‖2

)

. (3.3)

Taking

ϑ2 =
1

an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k) ‖(Ũk, Ṽ k)‖2 + an,n−1

an,0
‖(Ũ0, Ṽ 0)‖2,

we can get that there exists a ϑ > 0 such that for any ω ∈ Θ satisfying ‖ω‖ = ϑ, it

holds ℜ〈g(ω), ω〉 ≥ 0 evidently. By virtue of Lemma 3.3, there exists an element ω∗ ∈ Θ
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satisfying g(w∗) = 0, and we can also get

‖ω∗‖ ≤
(

1

an,0

n−1
∑

k=1

(an,n−k−1 − an,n−k) ‖(Ũk, Ṽ k)‖2 + an,n−1

an,0
‖(Ũ0, Ṽ 0)‖2

)1/2

.

We then go on to prove the uniqueness of the solution to scheme (3.1) and (3.2).

Suppose the scheme admits two solutions z = (z1, z2) and z̃ = (z̃1, z̃2), which satisfy

z1 −
i

an,0
∆hz1 −

i

an,0
Ĝ(Ũ , Ṽ )z1 −

n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ũk − an,n−1

an,0
Ũ0 = 0, (3.4)

z2 −
i

an,0
∆hz2 −

i

an,0
Ĝ(Ṽ , Ũ)z2 −

n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ṽ k − an,n−1

an,0
Ṽ 0 = 0, (3.5)

z̃1 −
i

an,0
∆hz̃1 −

i

an,0
Ĝ(Ũ , Ṽ )z̃1 −

n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ũk − an,n−1

an,0
Ũ0 = 0, (3.6)

z̃2 −
i

an,0
∆hz̃2 −

i

an,0
Ĝ(Ṽ , Ũ)z̃2 −

n−1
∑

k=1

an,n−k−1 − an,n−k

an,0
Ṽ k − an,n−1

an,0
Ṽ 0 = 0. (3.7)

Letting ε = (ε1, ε2) = z − z̃ and subtracting (3.4)-(3.5) from (3.6)-(3.7) respectively,

we have

ε1 −
i

an,0
∆hε1 −

i

an,0
Ĝ(Ũ , Ṽ )ε1 = 0, (3.8)

ε2 −
i

an,0
∆hε2 −

i

an,0
Ĝ(Ṽ , Ũ)ε2 = 0. (3.9)

Computing the inner product of (3.8)-(3.9) with ε = (ε1, ε2) and then taking the real

part of the result, we obtain

‖ε‖2 = 0.

This implies that ‖ε‖ = 0. Consequently, the uniqueness of the solution to scheme

(2.16)-(2.21) is derived and the proof is complete.

3.2. Stability and some notations

In this subsection, we present some important lemmas which will be used later.

Lemma 3.4. Let (Ũn, Ṽ n) be solution of the difference scheme (2.16)-(2.21). Then the

following inequalities:

‖Ũn‖ ≤ ‖Ũ0‖, ‖Ṽ n‖ ≤ ‖Ṽ 0‖, 1 ≤ n ≤ N (3.10)

hold.
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Proof. We first prove it holds for n = 1. Computing the inner product of (2.18) with

Ũ1, and taking the imaginary part of the equation, we obtain

‖Ũ1‖2 = ℜ〈Ũ0, Ũ1〉 ≤ ‖Ũ0‖‖Ũ1‖,

which implies that ‖Ũ1‖ ≤ ‖Ũ0‖. Similarly, we can prove that ‖Ṽ 1‖ ≤ ‖Ṽ 0‖.

Multiplying (2.16) by Ũn
~j

and sum them up for ~j ∈ J
′

h to get

i〈Dα
τ Ũ

n, Ũn〉 − ‖∇hŨ
n‖2 +

∑

~j

h∆Ĝ
n(Ũ , Ṽ )|Ũn

~j
|2 = 0.

The imaginary part of the above equation implies

ℜ〈Dα
τ Ũ

n, Ũn〉 = 0,

which indicates

an,0‖Ũn‖2 =
n−1
∑

k=1

(an,n−k−1 − an,n−k)ℜ〈Ũk, Ũn〉+ an,n−1ℜ〈Ũ0, Ũn〉

≤
n−1
∑

k=1

1

2
(an,n−k−1 − an,n−k)

(

‖Ũk‖2 + ‖Ũn‖2
)

+
1

2
an,n−1

(

‖Ũ0‖2 + ‖Ũn‖2
)

.

It can be further implied that

an,0‖Ũn‖2 ≤
n−1
∑

k=1

(an,n−k−1 − an,n−k)‖Ũk‖2 + an,n−1‖Ũ0‖2.

We prove (3.10) by mathematical induction. Suppose that the inequalities (3.10) hold

for 1 ≤ n ≤ m− 1, m ≥ 2. We prove that (3.10) also holds when n = m. If n = m, we

have

am,0‖Ũm‖2 ≤
m−1
∑

k=1

(am,m−k−1 − am,m−k) max
1≤k≤m−1

‖Ũk‖2 + am,m−1‖Ũ0‖2

≤
m−1
∑

k=1

(am,m−k−1 − am,m−k)‖Ũ0‖2 + am,m−1‖Ũ0‖2 = am,0‖Ũ0‖2,

which implies ‖Ũn‖ ≤ ‖Ũ0‖. Similarly, we can prove that ‖Ṽ n‖ ≤ ‖Ṽ 0‖ also holds for

1 ≤ n ≤ N . The proof is complete.

We also need the help of the following lemmas before we give the detailed proof of

Theorem 2.1.

Lemma 3.5 ([24, Lemma 3.2]). Under the assumptions (2.3)-(2.4), we have, for n =
1, 2, . . . , N ,

‖γn1 ‖ ≤ Cτ1−α
s , ‖γn2 ‖ ≤ Cτ1−α

s ,

where γn1 and γn2 are the temporal truncation errors and are well defined in (2.5) and (2.6).
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Lemma 3.6 ([46]). Let {ω~j} be a mesh function defined in Ωh for the three-dimensional

case. Then

‖ω‖Lp ≤ C‖ω‖3/p−1/2
L2

{

‖∇hω‖L2 + ‖ω‖L2

}3/2−3/p
, 2 ≤ p ≤ 6,

‖w‖Lp ≤ Ch3/p−3/q‖w‖Lq , 1 ≤ q ≤ p ≤ ∞,

where C is a constant independent of h and the mesh function ω.

Lemma 3.7. For any finite time sN = Tα > 0 and a specified nonnegative sequence

{λl}N−1
l=0 , assume that there exists a constant λ independent of time step τs such that

λ ≥∑N−1
l=0 λl. Suppose that the grid function sequence {vn | n ≥ 0} satisfies

Dα
τ (v

n)2 ≤
n
∑

l=1

λn−l(v
l)2 + µvn(γn1 + γn2 +R), n ≥ 1, (3.11)

where µ is a constant and γn1 , γn2 are defined in (2.5)-(2.6). Then, there are some positive

constants C∗
1 and τ∗s such that, when τs ≤ τ∗s , it holds that

vn ≤ 2Eα(2λsn)

(

v0 + µ

(

2C∗
1τ

2−α
s +

sn
Γ(1 + α)

R

))

, 1 ≤ n ≤ N, (3.12)

where

Eα(z) =
∞
∑

k=0

zk

Γ(1 + kα)
.

Proof. As in [52], the discrete convolution kernel is defined as follows:

pn,0 =
1

an,0
, pn,n−j =

1

aj,0

n
∑

k=j+1

(ak,k−j−1 − ak,k−j)pn,n−k, 1 ≤ j ≤ n− 1.

The following properties can be found in [52]:

n−1
∑

j=1

pn,n−j

smj
Γ(1 +mα)

≤ sm+1
n

Γ(1 +mα+ α)
, m = 0, 1, 2, . . . , (3.13)

n
∑

j=1

pn,n−jγ
j
1 ≤ C∗

1τ
2−α
s . (3.14)

We will obtain the global error µ
∑n

j=1 pn,n−j(γ
j
1 + γj2 + R) by letting m = 0 in (3.13)

and applying (3.14). It holds that

µ
n
∑

j=1

pn,n−j

(

γj1 + γj2 +R
)

≤ 2C∗
1µτ

2−α
s +

µsn
Γ(1 + α)

R. (3.15)

With the mentioned results, one can get the required results by following the proof

of [52, Theorem 3.1].
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3.3. Proof of Theorem 2.1

In this subsection, a complete proof of Theorem 2.1 will be given. A novel discrete

fractional Grönwall inequality is used. This is because the inequality works for the new

time discretization, i.e., the so called transformed L1 scheme. The scheme is derived

by a smoothing transformation t = s1/α, which can be helpful to deal with the initial

singular layer.

Proof. We mainly focus on presenting the proof for three-dimensional problem.

Noting that the error functions defined in (2.23) and subtracting (2.16)-(2.17) and

(2.18)-(2.19) from (2.9)-(2.10) and (2.12)-(2.13), respectively, we get

iDα
τ e

n
~j
+∆he

n
~j
+ Ĝn(ũ, ṽ)ũn~j − Ĝn(Ũ , Ṽ )Ũn

~j
= Pn

~j
+ γn

1~j
, ~j ∈ J

′

h, 2 ≤ n ≤ N, (3.16)

iDα
τ η

n
~j
+∆hη

n
~j
+ Ĝn(ṽ, ũ)ṽn~j − Ĝn(Ṽ , Ũ)Ṽ n

~j
= Qn

~j
+ γn

2~j
, ~j ∈ J

′

h, 2 ≤ n ≤ N, (3.17)

iDα
τ e

1
~j
+∆he

1
~j
+
(

|ũ0~j |
2 + β|ṽ0~j |

2
)

e1~j = P 1
~j
+ γ1

1~j
, ~j ∈ J

′

h, (3.18)

iDα
τ η

1
~j
+∆hη

1
~j
+
(

|ṽ0~j |
2 + β|ũ0~j |

2
)

η1~j = Q1
~j
+ γ1

2~j
, ~j ∈ J

′

h, (3.19)

e0~j = η0~j = 0, ~j ∈ J
′

h, (3.20)

en~j |∂Jh = ηn~j |∂Jh = 0, 0 ≤ n ≤ N. (3.21)

Multiplying both sides of Eq. (3.18) with e1~j and summing them over J
′

h, we have

ia1,0‖e1‖2 − ‖∇he
1‖2 +

∑

~j∈J
′

h

h∆
(

|ũ0~j |
2 + β|ṽ0~j |

2
)

|e1~j |
2 = 〈P 1 + γ11 , e

1〉,

where h∆ = h1h2h3. The imaginary part of the above equation implies

a1,0‖e1‖2 = ℑ〈P 1 + γ11 , e
1〉, (3.22)

and the real part implies

‖∇he
1‖2 ≤ max

x∈Ω

{

|u0(x)|2 + β|v0(x)|2
}

‖e1‖2 + ℜ〈P 1 + γ11 , e
1〉. (3.23)

By (2.7), we get

a1,0 =
α

τsΓ(1− α)
B(α, 1 − α) =

Γ(1 + α)

τs
,

where B(·, ·) represents the Beta function. Then it follows (3.22) and (3.23) that

‖e1‖ ≤ 1

a1,0

(

‖P 1‖+ ‖γ11‖
)

≤ C(τ2−α
s + h2),

τs‖∇he
1‖2 ≤ C

(

τ2−α
s + h2

)2
, (3.24)

where (2.14), (2.15) and Lemma 3.5 have been used.
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Similarly, we can prove that

‖η1‖ ≤ C
(

τ2−α
s + h2

)

,

τs‖∇hη
1‖2 ≤ C

(

τ2−α
s + h2

)2
, (3.25)

which implies that (2.22) holds when n = 1.

Now, we shall prove a slightly stronger inequality holds for 1 ≤ m ≤ n. There exist

positive constants τ∗s and h0 such that, when τs ≤ τ∗s , h ≤ h0, it holds

‖em‖2 + ‖ηm‖2 + τs
(

‖∇he
m‖2 + ‖∇hη

m‖2
)

≤ K1

(

τ2−α
s + h2

)2
, (3.26)

where K1 is a positive constant independent of τs, h and m. Clearly from (3.24) and

(3.25) we can see (3.26) holds for m = 1. The inequality is proved by mathematical

induction. We can assume that (3.26) holds for 2 ≤ m ≤ n− 1, all we need is to prove

that (3.26) also holds when m = n. Firstly, multiplying both sides of Eq. (3.16) with

en~j and summing them over J
′

h to arrive at

i〈Dα
τ e

n, en〉 − ‖∇he
n‖2 +Rn

1 = 〈Pn + γn1 , e
n〉, (3.27)

where

Rn
1 = h∆

∑

~j∈J
′

h

[

Ĝn(ũ, ṽ)ũn~j − Ĝn(Ũ , Ṽ )Ũn
~j

]

en~j .

Taking the imaginary part of the above equation gives

ℜ〈Dα
τ e

n, en〉+ ℑ(Rn
1 ) = ℑ〈Pn + γn1 , e

n〉. (3.28)

We rewrite Rn
1 by

Rn
1 = h∆

∑

~j∈J
′

h

[

(

Ĝn(ũ, ṽ)− Ĝn(Ũ , Ṽ )
)

Ũn
~j
+ Ĝn(ũ, ṽ)en~j

]

en~j

= h∆
∑

~j∈J
′

h

Ĝn(ũ, ṽ)|en~j |
2 + h∆

∑

~j∈J
′

h

(

Ĝn(ũ, ṽ)− Ĝn(Ũ , Ṽ )
)(

ũn~j − en~j

)

en~j

=: Rn
11 +Rn

12. (3.29)

By noting (2.11), it is easy to obtain

ℑ(Rn
11) = 0, (3.30)

and

|Rn
12| ≤ h∆

∑

~j∈J
′

h

∣

∣

∣

∣

2
(

|ũn−1
~j

|2 − |Ũn−1
~j

|2
)

+ 2β
(

|ṽn−1
~j

|2 − |Ṽ n−1
~j

|2
)

+
(

|ũn−2
~j

|2 − |Ũn−2
~j

|2
)

+ β
(

|ṽn−2
~j

|2 − |Ṽ n−2
~j

|2
)

∣

∣

∣

∣

×
(

|ũn~j |+ |en~j |
)

|en~j |, (3.31)
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where the similar term can be estimated as

∣

∣ũn−1
~j

∣

∣

2 −
∣

∣Ũn−1
~j

∣

∣

2 ≤
(

|ũn−1
~j

|+ |Ũn−1
~j

|
)(

|ũn−1
~j

| − |Ũn−1
~j

|
)

≤
(

2|ũn−1
~j

|+ |en−1
~j

|
)

∣

∣en−1
~j

∣

∣

= 2
∣

∣ũn−1
~j

∣

∣

∣

∣en−1
~j

∣

∣+
∣

∣en−1
~j

∣

∣

2
.

Applying it into (3.31) yields

|Rn
12| ≤ h∆

∑

~j∈J
′

h

[

2
(

2|ũn−1
~j

||en−1
~j

|+ |ũn−2
~j

||en−2
~j

|
)

+ 2β
(

2|ṽn−1
~j

||ηn−1
~j

|+ |ṽn−2
~j

||ηn−2
~j

|
)

+
(

2|en−1
~j

|2 + |en−2
~j

|2
)

+ β
(

2|ηn−1
~j

|2 + |ηn−2
~j

|2
)

]

(

|ũn~j |+ |en~j |
)

∣

∣en~j

∣

∣

≤ C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ C‖en‖2

+ C
(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6 , (3.32)

where Hölder inequality has been used in the last step.

The first term on the left-hand side of (3.28) can be estimated as

ℜ〈Dα
τ e

n, en〉 = ℜ
〈

an,0e
n −

n−1
∑

k=1

(an,n−k−1 − an,n−k) e
k − an,n−1e

0, en

〉

= ℜ〈an,0en, en〉 −
n−1
∑

k=1

ℜ〈(an,n−k−1 − an,n−k) e
k, en〉 − ℜ〈an,n−1e

0, en〉

≥ an,0‖en‖2 −
1

2

n−1
∑

k=1

(an,n−k−1 − an,n−k) ‖en‖2 −
1

2
an,n−1‖en‖2

− 1

2

n−1
∑

k=1

(an,n−k−1 − an,n−k) ‖ek‖2 −
1

2
an,n−1‖e0‖2

=
1

2
Dα

τ ‖en‖2. (3.33)

With the above inequalities (3.29)-(3.33), (3.28) deduces to

1

2
Dα

τ ‖en‖2 ≤ C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ C‖en‖2

+ C
(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6

+ (‖Pn‖+ ‖γn1 ‖) ‖en‖. (3.34)
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Similarly, multiplying (3.17) by ηn~j and summing them up for ~j ∈ J
′

h gives

i〈Dα
τ η

n, ηn〉 − ‖∇hη
n‖2 +Rn

2 = 〈Qn + γn2 , η
n〉, (3.35)

where

Rn
2 = h∆

∑

~j∈J
′

h

[

Ĝn(ṽ, ũ)ṽn~j − Ĝn(Ṽ , Ũ )Ṽ n
~j

]

ηn~j .

Taking the imaginary part of (3.35), we obtain

ℜ〈Dα
τ η

n, ηn〉+ ℑ(Rn
2 ) = ℑ〈Qn + γn2 , η

n〉. (3.36)

We rewrite Rn
2 by

Rn
2 = h∆

∑

~j∈J
′

h

[

(

Ĝn(ṽ, ũ)− Ĝn(Ṽ , Ũ)
)

Ṽ n
~j

+ Ĝn(ṽ, ũ)ηn~j

]

ηn~j

= h∆
∑

~j∈J
′

h

Ĝn(ṽ, ũ)
∣

∣ηn~j

∣

∣

2
+ h∆

∑

~j∈J
′

h

(

Ĝn(ṽ, ũ)− Ĝn(Ṽ , Ũ)
)(

ṽn~j − ηn~j

)

ηn~j

=: Rn
21 +Rn

22, (3.37)

from which, it is easy to obtain

ℑ(Rn
21) = 0, (3.38)

and

|Rn
22| ≤ h∆

∑

~j∈J
′

h

∣

∣

∣

∣

2
(

|ṽn−1
~j

|2 − |Ṽ n−1
~j

|2
)

+ 2β
(

|ũn−1
~j

|2 − |Ũn−1
~j

|2
)

+
(

|ṽn−2
~j

|2 − |Ṽ n−2
~j

|2
)

+ β
(

|ũn−2
~j

|2 − |Ũn−2
~j

|2
)

∣

∣

∣

∣

(

|ṽn~j |+ |ηn~j |
)

∣

∣ηn~j

∣

∣

≤ C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

+ C‖ηn‖2

+C
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6 . (3.39)

With the inequalities (3.37)-(3.39) and using the same approach above, (3.36) deduces

to

1

2
Dα

τ ‖ηn‖2 ≤ C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

+ C‖ηn‖2

+ C
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6

+ (‖Qn‖+ ‖γn2 ‖) ‖ηn‖. (3.40)

On the other hand, by taking the real part in (3.27) and (3.35), we obtain

‖∇he
n‖2 = −ℑ〈Dα

τ e
n, en〉+ ℜ(Rn

1 )−ℜ〈Pn + γn1 , e
n〉, (3.41)

‖∇hη
n‖2 = −ℑ〈Dα

τ η
n, ηn〉+ ℜ(Rn

2 )−ℜ〈Qn + γn2 , η
n〉. (3.42)
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Denote

T n
1 = Dα

τ e
n − an,0e

n, T n
2 = Dα

τ η
n − an,0η

n.

Then it follows that

‖T n
1 ‖ =

∥

∥

∥

∥

∥

−
n−1
∑

k=1

(an,n−k−1 − an,n−k) e
k − an,n−1e

0

∥

∥

∥

∥

∥

≤
[

n−1
∑

k=1

(an,n−k−1 − an,n−k) + an,n−1

]

max
0≤k

′
≤n−1

‖ek
′

‖

≤ an,0
√

K1

(

τ2−α
s + h2

)

≤ 2α+1/α−2τ−1
s

α1−αΓ(2− α)

√

K1

(

τ2−α
s + h2

)

≤ Cτ−1
s

(

τ2−α
s + h2

)

, (3.43)

where Lemma 3.2 has been used in the last step. Similarly,

‖T n
2 ‖ ≤ Cτ−1

s

(

τ2−α
s + h2

)

. (3.44)

Since

ℑ〈Dα
τ e

n, en〉 = ℑ〈T n
1 , e

n〉, (3.45)

and by (3.29), we further have

|Rn
11| ≤ C‖en‖2.

From which together with (3.43), (3.45) and (3.32), (3.41) can be derived to

‖∇he
n‖2 = −ℑ〈T n

1 , e
n〉+ ℜ(Rn

1 )−ℜ〈Pn + γn1 , e
n〉

≤ (‖T n
1 ‖+ ‖Pn‖+ ‖γn1 ‖) ‖en‖+ |Rn

11|+ |Rn
12|

≤ (‖T n
1 ‖+ ‖Pn‖+ ‖γn1 ‖) ‖en‖+ C‖en‖2

+C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+C
(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6 . (3.46)

Applying the above approach to (3.42), we can similarly get

‖∇hη
n‖2 ≤ (‖T n

2 ‖+ ‖Qn‖+ ‖γn2 ‖) ‖ηn‖+ C‖ηn‖2

+C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

+C
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6 . (3.47)

Next, we show the error estimates hold in two different cases, i.e., τs ≤ h2/(2−α) or

h ≤ τ
(2−α)/2
s .
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Case 1. τs ≤ h2/(2−α). Based on the induction hypothesis, we use Lemma 3.6 to get

‖em‖L3 ≤ Ch−1/2‖em‖L2 ≤ Ch−1/2K
1/2
1

(

τ2−α
s + h2

)

≤ 2CK
1/2
1 h3/2, 1 ≤ m ≤ n− 1,

‖en‖L6 ≤ Ch−1‖en‖L2 ,

‖ηm‖L3 ≤ Ch−1/2‖ηm‖L2 ≤ Ch−1/2K
1/2
1

(

τ2−α
s + h2

)

≤ 2CK
1/2
1 h3/2, 1 ≤ m ≤ n− 1,

‖ηn‖L6 ≤ Ch−1‖ηn‖L2 .

When h ≤ h0 = (16C4K1)
−1, there are

(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6 ≤ ‖en‖2L2 , (3.48)
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6 ≤ ‖ηn‖2L2 . (3.49)

Applying (3.48) into (3.34) yields

1

2
Dα

τ ‖en‖2 ≤ C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ C‖en‖2 + (‖Pn‖+ ‖γn1 ‖) ‖en‖, (3.50)

and applying (3.49) into (3.40) similarly yields

1

2
Dα

τ ‖ηn‖2 ≤ C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

+ C‖ηn‖2 + (‖Qn‖+ ‖γn2 ‖) ‖ηn‖. (3.51)

Adding the Eqs. (3.50)-(3.51) together, we obtain

Dα
τ

(

‖en‖2 + ‖ηn‖2
)

≤ 4C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ 2C(‖en‖2 + ‖ηn‖2)
+ 2 (‖Pn‖+ ‖γn1 ‖) ‖en‖+ 2 (‖Qn‖+ ‖γn2 ‖) ‖ηn‖

≤ 4C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ 2C(‖en‖2 + ‖ηn‖2)
+ 2 (‖Pn‖+ ‖γn1 ‖+ ‖Qn‖+ ‖γn2 ‖)

√

‖en‖2 + ‖ηn‖2.

According to (2.14) and applying Lemma 3.7 with the substitutions

vn =
√

‖en‖2 + ‖ηn‖2,
λ0 = 2C, λ1 = λ2 = 4C, λl = 0 (l ≥ 3),

µ = 2, R = ‖Pn‖+ ‖Qn‖,

we can conclude that

√

‖en‖2 + ‖ηn‖2 ≤ 2Eα(20Csn)

(

√

‖e0‖2 + ‖η0‖2 + 4C∗
1τ

2−α
s +

2
√
Csn

Γ(1 + α)

(

τ2s + h2
)

)

.
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Then by (3.20), we get

‖en‖2 + ‖ηn‖2 ≤ C
(

τ2−α
s + h2

)2
. (3.52)

Applying (3.48) into (3.46) yields

‖∇he
n‖2 ≤ (‖T n

1 ‖+ ‖Pn‖+ ‖γn1 ‖) ‖en‖+ C‖en‖2

+ C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

, (3.53)

and applying (3.49) into (3.47) yields

‖∇hη
n‖2 ≤ (‖T n

2 ‖+ ‖Qn‖+ ‖γn2 ‖) ‖ηn‖+ C‖ηn‖2

+ C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

. (3.54)

Then together with (2.14), (3.26), (3.43), (3.52) and Lemma 3.5, (3.53) can be de-

rived to

τs‖∇he
n‖2 ≤ C

(

τ2−α
s + h2

)2
.

Similarly, we have

τs‖∇hη
n‖2 ≤ C

(

τ2−α
s + h2

)2
.

The inequality (3.26) is proved in this case.

Case 2. h ≤ τ
(2−α)/2
s . We still assume that (3.26) holds when 1 ≤ m ≤ n−1. According

to induction hypothesis and use Lemma 3.6, we can get

‖em‖2L6 ≤ C (‖∇he
m‖+ ‖em‖)2 ,

‖em‖2L3 ≤ ‖em‖‖em‖L6

≤ C‖em‖(‖∇he
m‖+ ‖em‖)

≤ Cτ2−α
s

(

τ2−α
s + τ (3−2α)/2

s

)

≤ Cτ (7−4α)/2
s , 1 ≤ m ≤ n− 1.

When

τs ≤ τ (1)s = min
{

(16C2)−2/(5−4α), 1
}

,

we have

4C‖em‖2L3‖en‖2L6

≤ 8C2τ (7−4α)/2
s

(

‖∇he
n‖2 + ‖en‖2

)

≤ 1

2
τs‖∇he

n‖2 + ‖en‖2, 1 ≤ m ≤ n− 1.

Then it follows that

C
(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6

≤ 1

2
τs‖∇he

n‖2 + ‖en‖2, (3.55)
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and

C
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6

≤ 1

2
τs‖∇hη

n‖2 + ‖ηn‖2. (3.56)

Applying (3.55) into (3.34) yields

1

2
Dα

τ ‖en‖2 ≤ C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ C‖en‖2

+ (‖Pn‖+ ‖γn1 ‖) ‖en‖+
1

2
τs‖∇he

n‖2, (3.57)

and applying (3.56) into (3.40) similarly yields

1

2
Dα

τ ‖ηn‖2 ≤ C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

+ C‖ηn‖2

+ (‖Qn‖+ ‖γn2 ‖) ‖ηn‖+
1

2
τs‖∇hη

n‖2. (3.58)

It can be further inferred from (3.55) that

C
(

‖en−1‖2L3 + ‖en−2‖2L3 + ‖ηn−1‖2L3 + ‖ηn−2‖2L3

)

‖en‖2L6 ≤ 1

2
‖∇he

n‖2 + ‖en‖2,

C
(

‖ηn−1‖2L3 + ‖ηn−2‖2L3 + ‖en−1‖2L3 + ‖en−2‖2L3

)

‖ηn‖2L6 ≤ 1

2
‖∇hη

n‖2 + ‖ηn‖2.

Then the Eqs. (3.46) and (3.47) can be estimated as

τs‖∇he
n‖2 ≤ τs‖T n

1 ‖‖en‖+ τs (‖Pn‖+ ‖γn1 ‖) ‖en‖

+ τs

(

C‖en‖2 + C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

)

+ τs

(

1

2
‖∇he

n‖2 + ‖en‖2
)

,

τs‖∇hη
n‖2 ≤ τs‖T n

2 ‖‖ηn‖+ τs (‖Qn‖+ ‖γn2 ‖) ‖ηn‖

+ τs

(

C‖ηn‖2 +C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

)

+ τs

(

1

2
‖∇hη

n‖2 + ‖ηn‖2
)

.

Combining with (3.43) and (3.44), it implies that

1

2
τs‖∇he

n‖2 ≤ τ2−α
s ‖en‖+ τs (‖Pn‖+ ‖γn1 ‖) ‖en‖

+ τs

(

C‖en‖2 + C
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

)

, (3.59)

1

2
τs‖∇hη

n‖2 ≤ τ2−α
s ‖ηn‖+ τs (‖Qn‖+ ‖γn2 ‖) ‖ηn‖

+ τs

(

C‖ηn‖2 + C
(

‖ηn−1‖2 + ‖ηn−2‖2 + ‖en−1‖2 + ‖en−2‖2
)

)

. (3.60)
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Summing (3.59)-(3.60) and (3.57)-(3.58) together, respectively. Then adding the

two equations together, we obtain

Dα
τ

(

‖en‖2 + ‖ηn‖2
)

≤ 4C(1 + τs)
(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ 2C(1 + τs)(‖en‖2 + ‖ηn‖2)
+ 2

(

(1 + τs)(‖Pn‖+ ‖γn1 ‖) + τ2−α
s

)

‖en‖
+ 2

(

(1 + τs)(‖Qn‖+ ‖γn2 ‖) + τ2−α
s

)

‖ηn‖
≤ 8C

(

‖en−1‖2 + ‖en−2‖2 + ‖ηn−1‖2 + ‖ηn−2‖2
)

+ 4C(‖en‖2 + ‖ηn‖2)
+ 4

(

‖Pn‖+ ‖γn1 ‖+ ‖Qn‖+ ‖γn2 ‖+ τ2−α
s

)
√

‖en‖2 + ‖ηn‖2.

By using Lemma 3.7 and (2.14) again, we can similarly conclude that

‖en‖2 + ‖ηn‖2 ≤ C
(

τ2−α
s + h2

)2
, (3.61)

when under the circumstance τs ≤ min{τ (2)s , 1}.

Then combining (2.14), (3.43), (3.52), (3.26) and Lemma 3.5, (3.59) can be de-

rived to

τs‖∇he
n‖2 ≤ C

(

τ2−α
s + h2

)2
,

and (3.60) can be similarly deduced as

τs‖∇hη
n‖2 ≤ C

(

τ2−α
s + h2

)2
.

The result of inequality (3.26) is proved in this case.

Setting τ∗s = min{τ (1)s , τ
(2)
s }. Up to now, we have proved that (3.26) holds for m = n

when h ≤ h0 and τs ≤ τ∗s . We complete the induction.

For the other condition, when

τ2−α
s + h2 ≥ Ch,τ

for some positive constant Ch,τ , by applying Lemma 3.4, we can get

‖ũn − Ũn‖+ ‖ṽn − Ṽ n‖
≤ ‖ũ0‖+ ‖Ũ0‖+ ‖ṽ0‖+ ‖Ṽ 0‖

≤ ‖ũ0‖+ ‖Ũ0‖+ ‖ṽ0‖+ ‖Ṽ 0‖
Ch,τ

(

τ2−α
s + h2

)

.

Setting

C∗ = max
{

K1, (‖ũ0‖+ ‖Ũ0‖+ ‖ṽ0‖+ ‖Ṽ 0‖)/Ch,τ

}

,

finishes the proof of Theorem 2.1.
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4. An alternative approach to error analysis

In this section, we get the unconditional convergence results by using the so-called

temporal-spatial splitting method. We present a routing way to obtain the uncon-

ditional convergence results. To show the idea conveniently, here the spatial dis-

cretization is done by using the finite element methods. Let Ph be a quasiuniform

partition of Ω into triangles Tk (1 ≤ k ≤ M) in R2 or tetrahedra in R3. Denote

hFE = max1≤k≤M{diamTk} as the spatial mesh size. Let Sh be the finite-dimensional

subspace of H1
0 (Ω), which consists of continuous piecewise polynomials of degree

r (r ≥ 1) on Ph.

The temporal discretization still employs the transformed L1 scheme. We divided

the interval [0, Tα] into N equal subintervals with time step τs = Tα/N and let sn =
nτs. Denote ũn = ũ(~x, sn) and ṽn = ṽ(~x, sn), 0 ≤ n ≤ N , which are the exact solu-

tions after the change of variable t = s1/α. With above definitions and notations, the

transformed L1-Galerkin FEM is to seek (Ũn
h , Ṽ

n
h ) ∈ Sh × Sh such that

i(Dα
τ Ũ

n
h , ω1h)− (∇hŨ

n
h ,∇ω1h) +

(

f1(Û
n
h , V̂

n
h

)

Ũn
h , ω1h

)

= 0, 1 ≤ n ≤ N, (4.1)

i(Dα
τ Ṽ

n
h , ω2h)− (∇hṼ

n
h ,∇ω2h) +

(

f2(Û
n
h , V̂

n
h )Ṽ n

h , ω2h

)

= 0, 1 ≤ n ≤ N (4.2)

for any (ω1h, ω2h) ∈ Sh × Sh, where Û1
h = Rhũ0, V̂

1
h = Rhṽ0 with Rh being the usual

Ritz projection operator, and

Ûn
h = 2Ũn−1

h − Ũn−2
h , V̂ n

h = 2Ṽ n−1
h − Ṽ n−2

h , n ≥ 2.

We can obtain the unconditional convergence results for the proposed transformed

L1-Galerkin FEM scheme (4.1)-(4.2).

Theorem 4.1. Suppose that system (2.1)-(2.2) admits a unique solution (ũ, ṽ)∈ [Hr+1(Ω)
∩H1

0 (Ω)]
2 satisfying (2.3)-(2.4). Then the proposed r-degree finite element scheme (4.1)-

(4.2) admits a unique solution (Ũn
h , Ṽ

n
h ), n = 1, 2, . . . , N , satisfying

‖ũn − Ũn
h ‖2L2 + ‖ṽn − Ṽ n

h ‖2L2 ≤ C∗
f

(

τ2−α
s + hr+1

FE

)2
, 1 ≤ n ≤ N, r = 1, 2,

where C∗
f is a positive constant independent of τs and hFE .

Now, we follow the proof the unconditional convergent results in [25] and show

the main idea to get the results. First, let (Ũn, Ṽ n), n = 1, 2, . . . , N be the numerical

solutions for the time semi-discrete system

iDα
τ Ũ

n +∆Ũn + f1(Û
n, V̂ n)Ũn = 0, 1 ≤ n ≤ N, (4.3)

iDα
τ Ṽ

n +∆Ṽ n + f2(Û
n, V̂ n)Ṽ n = 0, 1 ≤ n ≤ N, (4.4)

where Û1 = ũ0, V̂ 1 = ṽ0, and

Ûn = 2Ũn−1 − Ũn−2, V̂ n = 2Ṽ n−1 − Ṽ n−2, n ≥ 2.
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One can show that the time-discrete system defined in (4.3)-(4.4) has a unique solution

(Ũn, Ṽ n), n = 1, 2, . . . , N . And there exists τ∗ > 0 such that when τs ≤ τ∗,

‖ũn − Ũn‖H2 + ‖ṽn − Ṽ n‖H2 ≤ τ1−α
s , 1 ≤ n ≤ N, (4.5)

‖Ũn‖L∞ + ‖Ṽ n‖L∞ ≤ 2K2, 1 ≤ n ≤ N, (4.6)

where K2 is a positive constant independent of τs and n. Thanks to boundedness of

‖Ũn‖L∞ and ‖Ṽ n‖L∞ , we can obtain that max1≤n≤N ‖RhŨ
n‖L∞+max1≤n≤N ‖RhṼ

n‖L∞

is bounded. Then we can define

K3 = max
1≤n≤N

‖RhŨ
n‖L∞ + max

1≤n≤N
‖RhṼ

n‖L∞ + 1.

We present a primary error estimates of RhŨ
n − Ũn

h and RhṼ
n − Ṽ n

h , then prove

the boundedness of numerical solution (Ũn
h , Ṽ

n
h ) in L∞-norm unconditionally, i.e., the

proposed r-degree finite element scheme (4.1)-(4.2) admits a unique solution (Ũn
h , Ṽ

n
h ),

n = 1, 2, . . . , N . Moreover, there exists τ∗1 > 0 and h∗ > 0 such that when τs ≤ τ∗1 ,

hFE < h∗,

‖RhŨ
n − Ũn

h ‖L2 + ‖RhṼ
n − Ṽ n

h ‖L2 ≤ hκFE , 1 ≤ n ≤ N, (4.7)

‖Ũn
h ‖L∞ + ‖Ṽ n

h ‖L∞ ≤ 2K3, 1 ≤ n ≤ N, (4.8)

where κ is a constant satisfies 3/2 < κ < 2.

According to the boundedness of the finite element numerical solution (Ũn
h , Ṽ

n
h ),

we then can provide error estimates for the fully-discrete system unconditionally. We

can eventually get a complete proof of the Theorem 4.1.

5. Numerical experiments

In this section, we carry out several numerical examples to confirm our theoretical

results in the paper. All computations are performed with Matlab. Throughout the

experiments, the spatial domain is divided into M parts in every direction uniformly,

that is, in the multi-dimensional cases, we set hi = Li/M =: h, i = 1, . . . , d. The time

interval [0, Tα] is also divided uniformly into N parts, τs = Tα/N . Then we use the

discrete L2-norm to measure the global error of the scheme, namely,

Eu(M,N) = ‖ŨN − u(T )‖L2 , Ev(M,N) = ‖Ṽ N − v(T )‖L2 .

Example 5.1. We consider the following TF-CNLS system:

i∂α
t u+∆u+

(

|u|2 + β|v|2
)

u = f1, x ∈ Ω, 0 < t ≤ T, (5.1)

i∂α
t v +∆v +

(

|v|2 + β|u|2
)

v = f2, x ∈ Ω, 0 < t ≤ T, (5.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (5.3)

u|x∈∂Ω = 0, v|x∈∂Ω = 0, (5.4)
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where β = 1, Ω = [0, 1] × [0, 1], (f1, f2) and (u0, v0) are chosen correspondingly to the

exact solutions given by

u(x, t) = 3(tα + t2)(1− x1)(1− x2) sin x1 sinx2,

v(x, t) = tα sin(πx1) sin(πx2).

The global errors in the terminal time T = 1 are listed in Table 1. To evaluate

the accuracy in the spatial direction, we fix N = 1000. The numerical results with

various α are provided in Table 1, which indicates the scheme can have a second-

order convergence rate in space. To test the accuracy in the temporal direction, we

take h = τ
(2−α)/2
s such that the spatial error bound in L2-norm is proportional to the

temporal error of τ2−α
s . The convergence orders with different α are shown in Table 2.

The results are found to be the desired temporal order of convergence 2 − α, which

confirms our theoretical analysis in previous section. We also test our scheme with

h = 1/40 and large time steps τs = h, 5h, 10h and present error results in Table 3.

Numerical results show that the proposed scheme is stable for the large time steps.

In order to confirm the unconditional convergence of the proposed method, we

solve the system with different stepsizes. The numerical results can be seen in Fig. 1.

These results imply that for each fixed τs, the error tends to be a constant. It implies

that the errors hold without any time-step restrictions dependent on the spatial mesh

size.

Table 1: Spatial convergence rates with N = 1000 for Example 5.1.

M
α = 0.3 α = 0.5 α = 0.7

Eu(M,N) order(u) Eu(M,N) order(u) Eu(M,N) order(u)

10 3.97e-04 * 3.97e-04 * 3.96e-04 *

20 9.87e-05 2.01 9.87e-05 2.01 9.86e-05 2.01

30 4.38e-05 2.00 4.38e-05 2.00 4.38e-05 2.00

40 2.46e-05 2.00 2.46e-05 2.00 2.46e-05 2.00

50 1.57e-05 2.01 1.57e-05 2.00 1.57e-05 2.00

M Ev(M,N) order(v) Ev(M,N) order(v) Ev(M,N) order(v)

10 4.55e-03 * 4.55e-03 * 4.55e-03 *

20 1.13e-03 2.01 1.13e-03 2.01 1.13e-03 2.01

30 5.03e-04 2.00 5.03e-04 2.00 5.03e-04 2.00

40 2.82e-04 2.00 2.83e-04 2.00 2.83e-04 2.00

50 1.81e-04 2.00 1.81e-04 2.00 1.81e-04 2.00

Example 5.2. Consider the TF-CNLS equations (5.1)-(5.4) in three-dimensional space,

where β = 1.5, Ω = [0, 1]×[0, 1]×[0, 1] , (f1, f2) and (u0, v0) are chosen correspondingly

to the exact solutions given by

u(x, t) = 60(tα + t2)(1− x1)(1− x2)(1 − x3) sinx1 sinx2 sinx3,

v(x, t) = tα sin(πx1) sin(πx2) sin(πx3).
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Table 2: Temporal convergence rates with M = [N (2−α)/2] for Example 5.1.

N
α = 0.4 α = 0.6 α = 0.8

Eu(M,N) order(u) Eu(M,N) order(u) Eu(M,N) order(u)

20 2.62e-04 * 5.73e-04 * 1.07e-03 *

40 9.25e-05 1.50 2.23e-04 1.36 4.79e-04 1.16

80 3.22e-05 1.52 8.70e-05 1.36 1.99e-04 1.27

160 1.08e-05 1.57 3.17e-05 1.46 8.89e-05 1.16

N Ev(M,N) order(v) Ev(M,N) order(v) Ev(M,N) order(v)

20 3.53e-03 * 6.98e-03 * 1.27e-02 *

40 1.19e-03 1.57 2.65e-03 1.40 5.60e-03 1.18

80 4.00e-04 1.58 1.02e-03 1.38 2.31e-03 1.28

160 1.30e-04 1.62 3.67e-04 1.47 1.03e-03 1.17

Table 3: Numerical results of Example 5.1 with β = 1 and h = 1/40.

α = 0.3 α = 0.5 α = 0.7

Eu(M,N) Ev(M,N) Eu(M,N) Ev(M,N) Eu(M,N) Ev(M,N)

τs = h 2.7941e-05 1.9596e-04 3.4984e-05 2.3575e-04 5.3212e-05 2.4826e-04

τs = 5h 5.0139e-04 9.3403e-04 4.4858e-04 6.3716e-04 4.8176e-04 4.9059e-04

τs = 10h 1.3047e-03 2.9126e-03 1.2905e-03 2.6391e-03 1.3380e-03 2.4283e-03
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Figure 1: L2-error of Eu and Ev for Example 5.1 with β = 1, α = 0.2.

To verify our theoretical results, we solve the three-dimensional problem by taking

different values in the spatial discretization with fixed τs. The parameters are set as

β = 1.5 and α = 0.6. As can be seen in the Fig. 2, the L2-errors of Eu and Ev both still

converge to a constant for a fixed τs, which shows that the scheme is unconditionally

convergent without any time-step restrictions.
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Figure 2: L2-error of Eu and Ev for Example 5.2 with β = 1.5, α = 0.6.

6. Conclusions

In this paper, we mainly proposed a transformed L1 semi-implicit finite difference

method for the time-fractional coupled nonlinear Schrödinger system. The scheme

combines the change of variable and the finite difference method. The unique solvabil-

ity and the unconditionally optimal error estimate of the scheme are further discussed.

This method takes the initial singularity into account. We also present a routing way

which is the so-called temporal-spatial splitting method to obtain the unconditional

convergence results. Both the methods show that the scheme can have (2 − α)-th or-

der convergence in temporal direction. Several numerical examples are performed to

support the theoretical results in the paper.

Acknowledgments

A. S. Hendy gratefully acknowledges the hospitality at the Huazhong University of

Science and Technology in the winter of 2024, where part of this work was conducted.

This work is supported in part by the National Natural Science Foundation of China

(NSFC) (Grant Nos. 11771162, 12231003).

References

[1] A. A. ALIKHANOV, A new difference scheme for the time fractional diffusion equation, J.

Comput. Phys. (2015), 424–438.
[2] G. BAI, B. LI, AND Y. WU, A constructive low-regularity integrator for the 1D cubic nonlin-

ear Schrödinger equation under the Neumann boundary condition, IMA J. Numer. Anal. 43

(2023), 3243–3281.



28 M. Li et al.

[3] W. BAO AND Y. CAI, Uniform error estimates of finite difference methods for the nonlinear
Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2012), 492–521.

[4] A. H. BHRAWY, E. H. DOHA, AND S. S. EZZ-ELDIEN, A new Jacobi spectral collocation

method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger

systems, Eur. Phys. J. Plus 129 (2014), 1–21.

[5] F. E. BROWDER, Existence and uniqueness theorems for solutions of nonlinear boundary

value problems, in: Proceedings of Symposia in Applied Mathematics, AMS 17 (1965),

24–49.

[6] H. BRUNNER, The numerical solution of weakly singular Volterra integral equations by col-

location on graded meshes, Math. Comput. 45 (1985), 417–437.

[7] H. BRUNNER, L. LING, AND M. YAMAMOTO, Numerical simulations of 2D fractional subdif-

fusion problems, J. Comput. Phys. 229 (2010), 6613–6622.
[8] W. CAO ET AL., Implicit-explicit difference schemes for nonlinear fractional differential equa-

tions with nonsmooth solutions, SIAM J. Comput. 38 (2016), A3070–A3093.
[9] O. CHEPIZHKO AND F. PERUANI, Diffusion, subdiffusion, and trapping of active particles in

heterogeneous media, Phys. Rev. Lett. 111 (2013), 160604.

[10] K. W. CHOW, K. K. Y. WONG, AND K. LAM, Modulation instabilities in a system of four

coupled, nonlinear Schrödinger equations, Phys. Lett. A 372 (2008), 4596–4600.

[11] N. J. FORD, M. M. RODRIGUES, AND N. VIEIRA, A numerical method for the fractional

Schrödinger type equation of spatial dimension two, Fract. Calc. Appl. Anal. 16 (2013),
1–15.

[12] X. GUO AND M. XU, Some physical applications of fractional Schrödinger equation, J. Math.
Phys. 47 (2006), 082104.

[13] A. S. HENDY AND M. A. ZAKY, Global consistency analysis of L1-Galerkin spectral schemes

for coupled nonlinear space-time fractional Schrödinger equations, Appl. Numer. Math. 156
(2020), 276–302.
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