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Abstract. When DeepONet approximates solution operators of partial differential

equations (PDEs) with discontinuous solutions, it poses a foundational approxima-
tion lower bound due to its linear reconstruction property. Inspired by the mov-

ing mesh method, we propose an R-adaptive DeepONet method, which consists of:

(1) the output data representation is transformed from the physical domain to the
computational domain using the equidistribution principle; (2) the maps from in-

put parameters to the solution and the coordinate transformation function over the
computational domain are learned using DeepONets separately; (3) the solution

over the physical domain is obtained via post-processing methods such as the inter-

polation method. Additionally, we introduce a solution-dependent weighting strat-
egy in the training process to reduce the error. We establish an upper bound for the

reconstruction error based on piecewise linear interpolation and show that the intro-

duced R-adaptive DeepONet can reduce this bound. Moreover, for two prototypical
PDEs with sharp gradients or discontinuities, we prove that the approximation error

decays at a superlinear rate with respect to the trunk basis size, unlike the linear
decay observed in vanilla DeepONets. Numerical experiments on several PDEs with

discontinuous solutions are conducted to verify the advantages of the R-adaptive

DeepONet over available variants of DeepONet.
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1. Introduction

Many interesting phenomena in physics and engineering are described by partial

differential equations whose solutions contain sharp gradient regions or discontinuities.
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The most common types of such PDEs are hyperbolic systems of conservation laws [10],

such as Euler equations, inviscid Burgers’ equation, etc. It is well-known that solutions

of these PDEs develop finite-time discontinuities such as shock waves, even when the

initial and boundary data are smooth. Other examples include convection-dominated

equations, reaction-diffusion equations, and so on. It is challenging for traditional

numerical methods because resolving these discontinuities, such as shock waves and

contact discontinuities, requires petite grid sizes. Moreover, characterizing geometric

structures, especially in terms of effectively suppressing numerical oscillations near dis-

continuous interfaces and maintaining the steepness of transition interfaces, is difficult.

Specialized numerical methods such as adaptive finite element methods [1] and dis-

continuous Galerkin finite element methods [12] have been successfully used in this

context, but their high computational cost limits their wide use.

At the same time, data-driven approaches are becoming a competitive and viable

means for solving these challenging problems. Deep neural networks (DNNs) have

shown promising potential for solving both forward and inverse problems associated

with PDEs [3]. Numerous researchers have explored methods that utilize DNNs for

solving PDEs (see [13,21] and references therein).

Machine learning for PDEs primarily focuses on learning solutions by training a map-

ping from the computational domain to the solution. This process, known as the so-

lution parameterization, encompasses techniques such as the deep Ritz method [14],

deep Galerkin method [34], and physics informed neural networks (PINNs) [5, 32].

These methods utilize DNNs to represent the solution and integrate the PDE informa-

tion into the loss function. The approximate solution is obtained by minimizing the

loss function. Since proposed, these methods have been successfully applied to solve

both forward and inverse problems for various linear and nonlinear PDEs [5, 18, 30].

Note that these approaches are tailored to specific instances of PDEs. Consequently, if

the coefficients or initial conditions associated with the PDEs change, the model has to

be retrained, resulting in poor generalization ability across different PDEs.

Along another line, there is ongoing work on parameterizing the solution map us-

ing DNNs, referred to as operator learning [2, 8, 17, 20, 26, 28]. In [8], Chen and

Chen introduced a novel learning architecture based on neural networks, termed op-

erator networks, and demonstrated that these operator networks possess an aston-

ishing universal approximation property for infinite-dimensional nonlinear operators.

Recently, the authors of [28] replaced the shallow branch and trunk networks in oper-

ator networks with DNNs and proposed the deep operator network (DeepONet). Since

proposed, it has been successfully applied to a variety of problems with differential

equations [6, 9, 27, 39]. In [26], Li et al. proposed Fourier neural operators based on

a nonlinear generalization of the kernel integral representation for some operators and

makes use of the convolutional or Fourier network structure.

Although DeepONets have demonstrated good performance across diverse appli-

cations, some studies have pointed out that DeepONets fail to efficiently approximate

solution operators of PDEs with sharp gradients or discontinuities [22,24]. In [22], the

authors gave a fundamental lower bound on the approximation error of DeepONets and


