Numer. Math. Theor. Meth. Appl. Vol. 18, No. 1, pp. 31-65
doi: 10.4208/nmtma.0A-2024-0124 February 2025

R-Adaptive DeepONet: Learning Solution
Operators for PDEs with Discontinuous
Solutions Using an R-Adaptive Strategy

Yameng Zhu', Jingrun Chen? and Weibing Deng!:*

1 School of Mathematics, Nanjing University, Nanjing 210093, PR. China
2 School of Mathematical Sciences and Suzhou Institute for Advanced Research,
University of Science and Technology of China, Suzhou 215127, P.R. China

Received 24 October 2024; Accepted (in revised version) 7 January 2025

Abstract. When DeepONet approximates solution operators of partial differential
equations (PDEs) with discontinuous solutions, it poses a foundational approxima-
tion lower bound due to its linear reconstruction property. Inspired by the mov-
ing mesh method, we propose an R-adaptive DeepONet method, which consists of:
(1) the output data representation is transformed from the physical domain to the
computational domain using the equidistribution principle; (2) the maps from in-
put parameters to the solution and the coordinate transformation function over the
computational domain are learned using DeepONets separately; (3) the solution
over the physical domain is obtained via post-processing methods such as the inter-
polation method. Additionally, we introduce a solution-dependent weighting strat-
egy in the training process to reduce the error. We establish an upper bound for the
reconstruction error based on piecewise linear interpolation and show that the intro-
duced R-adaptive DeepONet can reduce this bound. Moreover, for two prototypical
PDEs with sharp gradients or discontinuities, we prove that the approximation error
decays at a superlinear rate with respect to the trunk basis size, unlike the linear
decay observed in vanilla DeepONets. Numerical experiments on several PDEs with
discontinuous solutions are conducted to verify the advantages of the R-adaptive
DeepONet over available variants of DeepONet.

AMS subject classifications: 47-08, 47H99, 65D15, 65M50, 68Q32, 68T05, 68T07
Key words: Scientific machine learning, neural operators, DeepONet, R-adaptive method.

1. Introduction

Many interesting phenomena in physics and engineering are described by partial
differential equations whose solutions contain sharp gradient regions or discontinuities.

*Corresponding author. Email addresses: dg21210022@smail.nju.edu.cn (Y. Zhu), jingrunchen@ustc.
edu.cn (J. Chen), wbdeng@nju.edu.cn (W. Deng)

http://www.global-sci.org/nmtma 31 ©2025 Global-Science Press

32 Y. Zhu, J. Chen and W. Deng

The most common types of such PDEs are hyperbolic systems of conservation laws [10],
such as Euler equations, inviscid Burgers’ equation, etc. It is well-known that solutions
of these PDEs develop finite-time discontinuities such as shock waves, even when the
initial and boundary data are smooth. Other examples include convection-dominated
equations, reaction-diffusion equations, and so on. It is challenging for traditional
numerical methods because resolving these discontinuities, such as shock waves and
contact discontinuities, requires petite grid sizes. Moreover, characterizing geometric
structures, especially in terms of effectively suppressing numerical oscillations near dis-
continuous interfaces and maintaining the steepness of transition interfaces, is difficult.
Specialized numerical methods such as adaptive finite element methods [1] and dis-
continuous Galerkin finite element methods [12] have been successfully used in this
context, but their high computational cost limits their wide use.

At the same time, data-driven approaches are becoming a competitive and viable
means for solving these challenging problems. Deep neural networks (DNNs) have
shown promising potential for solving both forward and inverse problems associated
with PDEs [3]. Numerous researchers have explored methods that utilize DNNs for
solving PDEs (see [13,21] and references therein).

Machine learning for PDEs primarily focuses on learning solutions by training a map-
ping from the computational domain to the solution. This process, known as the so-
lution parameterization, encompasses techniques such as the deep Ritz method [14],
deep Galerkin method [34], and physics informed neural networks (PINNs) [5, 32].
These methods utilize DNNs to represent the solution and integrate the PDE informa-
tion into the loss function. The approximate solution is obtained by minimizing the
loss function. Since proposed, these methods have been successfully applied to solve
both forward and inverse problems for various linear and nonlinear PDEs [5,18,30].
Note that these approaches are tailored to specific instances of PDEs. Consequently, if
the coefficients or initial conditions associated with the PDEs change, the model has to
be retrained, resulting in poor generalization ability across different PDEs.

Along another line, there is ongoing work on parameterizing the solution map us-
ing DNNs, referred to as operator learning [2, 8,17, 20, 26, 28]. In [8], Chen and
Chen introduced a novel learning architecture based on neural networks, termed op-
erator networks, and demonstrated that these operator networks possess an aston-
ishing universal approximation property for infinite-dimensional nonlinear operators.
Recently, the authors of [28] replaced the shallow branch and trunk networks in oper-
ator networks with DNNs and proposed the deep operator network (DeepONet). Since
proposed, it has been successfully applied to a variety of problems with differential
equations [6,9,27,39]. In [26], Li et al. proposed Fourier neural operators based on
a nonlinear generalization of the kernel integral representation for some operators and
makes use of the convolutional or Fourier network structure.

Although DeepONets have demonstrated good performance across diverse appli-
cations, some studies have pointed out that DeepONets fail to efficiently approximate
solution operators of PDEs with sharp gradients or discontinuities [22,24]. In [22], the
authors gave a fundamental lower bound on the approximation error of DeepONets and

R-adaptive DeepONet 33

show that there are fundamental barriers to the expressive power of operator learning
methods based on linear reconstruction. This is of particular relevance for problems
in which the optimal lower bound exhibits a slow decay in terms of the number of
basis functions n, due to the slow decay of the eigenvalues of the covariance operator.
To reduce the approximation error, the resolution must be high enough, i.e., we need
a large n. However, this may lead to a dramatic increase in computing costs. Therefore,
a method with a small approximation error and moderate computational cost is highly
desirable.

Variants of DeepONets have been developed to overcome this limitation. Hadorn
[15] investigated the behavior of DeepONet to understand the challenges in detecting
sharp features in the target function when the number of basis n is small. They pro-
posed Shift-DeepONet, which adds two neural networks to shift and scale the input
function. Venturi and Casey [37] analyzed the limitations of DeepONet using singu-
lar value decomposition and proposed a flexible DeepONet (flexDeepONet) by adding
a pre-net and an additional output in the branch net. Seidman et al. [33] introduced
a nonlinear manifold decoder (NOMAD) framework, utilizing a neural network that
takes the output of the branch net as input along with the query location. Recently,
Lee et al. [25] proposed a HyperDeepONet, which leverages the expressive power of
hypernetworks to learn complex operators with a smaller set of parameters. These
methods address the limitations of linear reconstruction by modifying the structure of
DeepONet, allowing the trunk basis to incorporate information about the input param-
eters.

Traditional numerical methods, such as finite difference method and finite element
method (FEM), rely on the linear reconstruction using a linear space of basis functions
over a predefined mesh to approximate the solution. For solutions with sharp gradi-
ents or discontinuities, a fine mesh is needed to resolve local singularities which may
lead to significant computational time and data storage. Therefore, researchers have
introduced the moving mesh (R-adaptive) method to adaptively and automatically op-
timize and adjust mesh configurations based on solution characteristics, see [19, 35]
and references therein. The core concept involves adjusting grid distribution through
strategic methods without altering the number of mesh grids and their topological con-
nections. This process ensures grids concentrate in regions where solution variations
are pronounced. Consequently, this adaptive approach enhances numerical simulation
accuracy without increasing computational costs.

To overcome the limitation of linear reconstruction in DeepONet, in this study, we
propose a new framework inspired by the moving mesh method, called R-adaptive
DeepONet. It employs different learning strategies while maintaining the vanilla struc-
ture in the original DeepONet. To this end, we introduce a solution-dependent coor-
dinate transformation from the physical domain to the computational domain. The
transformed coordinates are then used as the input to the trunk net, similar to tra-
ditional R-adaptive methods. This enables adaptive adjustment of basis functions in
DeepONet based on the property of the output solution. Specifically, we first transform
the representation of the output data from the physical domain to the computational

34 Y. Zhu, J. Chen and W. Deng

domain using the equidistribution principle. This yields two output datasets: the co-
ordinate transform function and the solution over the computational domain. Second,
we use two DNN models to learn the maps from the input parameters to the coordinate
transform function and the solution over the computational domain separately. We em-
phasize that while learning the forward coordinate transformation from the physical to
the computational domain can ensure the injectivity, it retains the singularity of the
original solution which is difficult to learn. Therefore, we propose an alternative ap-
proach using inverse coordinate transform learning. Although the inverse coordinate
transformation does not guarantee a bijection, the functions over the output domain are
smoother, making it easier to learn. Given the choice of the inverse coordinate trans-
form, directly predicting the solution value for a given arbitrary coordinate becomes
impractical. Thus, we finally recover the solution using post-processing methods such
as the (linear) interpolation method. It is worth mentioning that, according to the error
analysis of the operator composition, we introduce two novel solution-related weights
to the training process of each component.

We establish an upper bound for the reconstruction error using piecewise linear
interpolation and demonstrate that our proposed R-adaptive DeepONet can reduce this
bound. Additionally, we rigorously prove that R-adaptive DeepONet can efficiently
approximate the prototypical PDEs with sharp gradients or discontinuities. Specifically,
the approximation error decays at a superlinear rate with respect to the trunk basis
size, while the vanilla DeepONet exhibits at best the linear decay rate [22].

To illustrate the effectiveness of our approach, we compare the performance of
several DeepONet models for the linear advection equation, the Burgers’ equation with
low viscosity, and the compressible Euler equations of gas dynamics. The results consis-
tently demonstrate that our R-adaptive DeepONet outperforms vanilla DeepONet and
competes effectively with Shift DeepONet.

The remainder of this paper is structured as follows. In Section 2, we give a brief
introduction to DeepONet. And then discuss the details of the R-adaptive DeepONet
in Section 3. In Section 4, we show some theoretical results. In Section 5, we present
some numerical results. Finally, some conclusions and comments are given.

2. Operator learning and DeepONet

2.1. Problem setting

The goal of operator learning is to learn a mapping from one infinite-dimensional
function space to another by using a finite collection of observations of input-output
pairs from this mapping. We formalize this problem as follows. Let X and) be two
Banach spaces of functions defined on bounded domains Dy C R%*, Dy, ¢ R% respec-
tively and G : X —) be a (typically) non-linear map. Suppose we have observations
{a® u@}N | where o) ~ i are i.i.d. samples drawn from some probability measure
1 supported on X and u() = G(a(?). We aim to build an approximation of G by con-
structing a parametric map Gy : X —) with parameters 6 € RP#2 such that Gy ~ G.

R-adaptive DeepONet 35

Sometimes the input function space X’ can be parameterized by a finite dimensional
vector space X. Thus, the original objective operator G : X —) can also be equiv-
alently expressed as G : X —). For example, if we consider the mapping from the
initial density, velocity, and pressure (po, ug, po) to the energy E at some time 7" in the
sod shock tube problem, we can parameterize the initial data by the left and right states
(pr,ur,pr), (pr, ur, pr) and the location of the initial discontinuity (. In this case, the
input function space is equivalent to a 7-dimensional vector space. For convenience,
we still write G : X — Y instead of distinguishing between G and G.

We are interested in controlling the error of the approximation of the average for .
In particular, assuming G is u-measurable, we aim to control the Li()(; V) Bochner
norm of the approximation as follows:

IG = Goll Lz () = EanpllG(a) = Go(a)|3 = /X IG(a) = Go(@)[I3 du(a). (2.1)

2.2. A brief introduction to DeepONet

DeepONets [28] present a specialized deep learning architecture for operator learn-
ing that encapsulates the universal approximation theorem for operators [8]. Here we
provide a brief introduction to the effective application of DeepONets for learning op-
erators.

To construct a DeepONet, we first need to encode the input parameter function.
In [28], the authors use a fixed collection of training sensors {z1, z2,..., 2y} C Dy to
encode the input function a by the point values £(a) := E(a(z1),a(z2),...,a(xy,)) in
R™. As we mentioned before, sometimes the input function space X' contains a finite-
dimensional parameterization and we can encode a € X by this parameterization di-
rectly. DeepONet is formulated in terms of two neural networks:

(1) Branch-net 8: it maps the point values £(a) to coefficients
B(E() = (B(E@)....., BulE(@))),
resulting in a mapping
B:R™ — R", E(a) — B(E(a)). (2.2)
(2) Trunk-net 7(y) = (71(y),...,7n(y)): it is used to define a mapping
7:Dy — R", y — 7(y). 2.3)

While the branch net provides the coefficients, the trunk net provides the “basis”
functions in an expansion of the output function of the form

G"N(a)(y) = Y Brl@)mly), a€X, ye Dy
k=1

with Bi(a) = Br(E(a)). The resulting mapping GP°N : X — Y, a — GPON(a) is referred
to as the vanilla DeepONet.

36 Y. Zhu, J. Chen and W. Deng

Limitation of DeepONet. Although DeepONets have been proven to be universal
within the class of measurable operators [22], a fundamental lower bound on the ap-
proximation error has also been identified.

Theorem 2.1 (Lanthaler et al. [22, Theorem 3.4]). Let X’ be a separable Banach space,
Y a separable Hilbert space, and let . be a probability measure on X. Let G : X — Y
be a Borel measurable operator with Eq,[[|G(a)||3] < oo. Then the following lower
approximation bound holds for any DeepONet NPON with trunk-/branch-net dimension n:

1/2
ENPN) 1= Eos [INPV(@) = G@)I3| " 2 &= DN @4
i>n

where the optimal error &,y is written in terms of the eigenvalues A\ > Ay > --- of the
covariance operator I'g,, := Ey~g, [(u ® u)] of the push-forward measure Gy,

The same lower bound applies to any operator approximation of the form N (a) =
> p—1 Br(a)Ty, where 5 : X — R are arbitrary functionals. This bound, for exam-
ple, also holds for the PCA-Net architecture discussed in [2,17]. In [23], the authors
referred to any operator learning architecture of this form as a method with “linear re-
construction”, since the output function N (a) is restricted to the linear n-dimensional
space spanned by the 7,...,7, €).

When the eigenvalues \; > A2 > - - - of the covariance operator I'g,, , decay slowly,
approximation using DeepONet may become inaccurate. For instance, the solution
operators of advection PDEs and the Burgers’ equation are challenging to approximate
accurately when using DeepONet with a small number of basis functions n (see [23]).

2.3. Variant models of DeepONet

Several variants of DeepONet have been developed to overcome its limitations.
Hadorn [15] proposed the Shift-DeepONet. The main idea is that a scale net A =

(Ar)i=15
AR — RV ga) s A(a) = (A1(a), As(a), ..., An(a)),
where Ay (a) is matrix-valued functions, and a shift net v = (y;)}}_,, with
Yt R™ — R4y E(a) = v(a) :== (7(a),12(a), ..., n(a))

to scale and shift the input query position y, while retaining the DeepONet branch- and
trunk-nets 3, 7 defined in (2.2) and (2.3), respectively. The Shift-DeepONet A/$PON s
an operator of the form

NPN(q)(y) = Z Br(a)i (Ak(a) - y + vx(a)).
=1

R-adaptive DeepONet 37

This approach incorporates the information of the input parameter function a into the
trunk basis, allowing the Shift-DeepONet to overcome the limitations of linear recon-
struction.

Similar to the Shift-DeepONet, Venturi & Casey proposed the flexible DeepONet
(flexDeepONet) [37], using the additional network, pre-net, to give the bias between
the input layer and the first hidden layer, thus introducing the information of a to the
trunk basis. NOMAD, developed by Seidman et al. [33], devised a nonlinear output
manifold using a neural network that takes the output of the branch net {3;}? ; and
the query location y, to overcome the limitation of vanilla DeepONet. Lee et al. [25]
went a step further. They used a hypernetwork to share the information of input a to
all parameters of the trunk network and proposed a general model HyperDeepONet.

All these methods incorporate information from the input function « into the trunk
basis to overcome the limitation of linear reconstruction. In practical performance,
they do not differ significantly. To validate the effectiveness of our proposed method,
we use Shift DeepONet as a representative among these models to compare with the
R-adaptive DeepONet in this paper.

3. Proposed methodology: R-adaptive DeepONet

3.1. R-adaptive DeepONet

Many traditional numerical methods rely on linear reconstruction and encounter
similar limitations when facing local singularities. R-adaptive methods, also known as
moving mesh methods, effectively alleviate these issues. In R-adaptive computations,
the number of basis functions remains fixed, but they dynamically adjust based on the
problem characteristics. This adaptation reduces errors without significantly increasing
computational costs. In Appendix A, we provide a brief introduction to the R-adaptive
method and its associated equidistribution principle.

Inspired by the R-adaptive method, we propose a new learning strategy based on
DeepONet for operator learning of PDEs with local singularity, termed R-adaptive Deep-
ONet.

Formally, given G : X —), a — u(y), we introduce a homeomorphism gy = y(¢) :
Dy — Dy,¢ — y(&), which maps the computational domain to the physics domain.
This allows us to divide the original operator into two new operators as follows:

T:a — g(& and G:a — ﬂ(&):u(g(ﬁ)),

where 7 maps « to the coordinate transform function § = y(¢), and G defines the map
to the solution in the computational domain. The original object operator to be learned
can be represented as

G(a)(y) = G(a) o (T(a) " (y), 3.1)

where (T(a))™! : y — &(y) represents the inverse function of § = y(¢). Since the
objective operator G(a) can be represented by these two operators, we can use two

38 Y. Zhu, J. Chen and W. Deng

independent DeepONets to learn these two operators as follows:
To, =T :a — y(&) and QQG ~G:a — ul(f),

where 67 and 6 represent the parameters of the two models, respectively. For clarity,
we will refer to 7 as the adaptive coordinate operator and G as the adaptive solu-
tion operator. The corresponding 7, and G, are termed the adaptive coordinate and
adaptive solution DeepONets respectively. Together, the pair {7.., Gy, } is then called
an R-adaptive DeepONet system.

Since our approach is data-driven, generating appropriate training data for the
models T, and Gy, using the equidistribution principle is crucial. Given observations
{a®, u@}N | we first preprocess the sampled data. This involves determining the cor-
responding coordinate transform function 3 (¢) for each target function «("(y) and
obtaining the solution on the computational domain (" (¢). As a result, we generate
training data sets {a®, {y® (¢;)}}Y, and {a®, {a®(¢&;)}}Y, for the two independent
models, respectively. In this step, we use the mesh generator proposed by Ceniceros and
Hou [7]. Other mesh generation methods can be found in [19]. We emphasize that for
problems with discontinuous solutions, the R-adaptive DeepONet needs smaller train-
ing datasets than other DeepONets since the output functions y(§) and @(§) are both
smooth, which allow sparser sampling data to capture most features of them.

Here, we choose to learn the mapping from a to y(&) instead of £(y), since the
coordinate transform y — &(y) retains the singularity of the output function, while the
inverse £ — y(&) is relatively smooth, and thus is easier to learn. Our goal is to obtain
the output function in terms of y, but the prediction process yields two functions in
terms of £. To determine the value of u at y, we must first find the corresponding £ and
use it as the input of the learned G(a) to predict the function value. However, due to the
black-box nature of neural networks, deducing the input £ from output y is challenging.
Consequently, post-processing is necessary to make accurate predictions. After training,
we have two independent models mapping the input a to two functions of £. Given
a fixed a and £ € Dy, we can get a pair {y(§),a(&)}, which forms a mesh grid in
the graph of u = G(a). By using a uniform mesh {¢;} as the input of the trunk net, we
generate a set of points {y(¢;), @(&;)} that provides a discrete representation of u. These
points are densely distributed in places where u has singularity, and sparsely distributed
in places where u is smooth, hence effectively capturing the function u. Using these
discrete points, we can reconstruct the output function u by the local interpolation
method.

3.2. Training settings

In Section 2.1, we set the target to minimize the L2(X;)) Bochner norm of the
approximation (see (2.1)). In our model, if we assume that the adaptive coordinate
operator 7 is known and only consider learning the mapping Gy,,, the corresponding
approximation error E; can be written as follows:

Eg = HQ - -C;GG © TﬁlHLg(x;y)

R-adaptive DeepONet 39

= Ean||G(a) = Goo (a)(T(@)) ",
_E,., /D 1G(0) () — G (a) (T (@)~ (1)) *dly

~Barys [10(0)©) ~ oo @O [det((T(@)(€))]de:

Therefore, in the loss function, we naturally introduce the weight |det(J(7 (a)(&)))|. To
prevent this weight from being zero or too large, we modify it to

wg(a, &) = min {M, VIt \det(J(T(a)(g)))P} : (3.2)

where M is the upper bound we set for this weight, and |det(J(7 (a)(&)))| for weight
computing is obtained from the data pre-processing. Therefore, in the training process,
we aim to minimize the weight empirical loss function

N1 Na

o= Ni x N N2 > 2 lk(€) — Gog (ax) (&) "wg(ar, &), (3.3)

k=1j=1

where N; denotes the number of sampled inputs a;, and N, denotes the number of
sensors §;. Generally, according to the equidistribution principle, wg(a, §) is relatively
small in places where u has singularities. This weighting ensures that the model train-
ing is more concentrated over the areas where u is smooth.

In parallel, we can write the approximation error of 7 as

Er=|g-go ’TG;IHL%L(X;)J)

_E,., /D 1G(a) () — G(a) (Tay () o (T(a)) ™ (v))[*dy
_E,., /D 1G(a) () — G(a) (Tay (a)(€))|*|det(J (T(a)(£))) | d
~ Eqvs / VG (@)|*|y — Top (a) (€)]] det(T (T (a)(€)))|de.

So the corresponding weight can be chosen as

wr(a,€) = min { M, v/T+ VG (@) [det(T (T (@))P } (3.4)

where M is the upper bound we set for this weight. The density function is usually
of the form p = /1 + |Vul|?, where § is a constant. According to (A.1), we can see
that |det(J(7 (a)(€)))| is inversely proportional to p. So here we can see that wy(a,§)
computed according to (3.4) has the opposite performance to wgs(a,§). wr(a,§) is
small in places where u is smooth and large in places where u has singularities.
Moreover, for convenience and accuracy of post-processing, a well-structured mesh
is crucial. The coordinate transform functions learned by DeepONet do not inherently

40 Y. Zhu, J. Chen and W. Deng

guarantee untangling. To prevent mesh tangling, it is essential to ensure that the Ja-
cobian determinant of the transformation function y(&) satisfies det(.J(7p,.(a)(£))) > 0.
Therefore, we incorporate a regularization term into the loss function of the coordinate
learning process. The modified loss function becomes

1 N1 No
L= NN, ;; [Oél!ﬂk(ﬁj) = Top (ai) (&) Pwr(ar, &)

+ aReLU? (~det(J(To (@) (§)) |, (3.5)

where «; and «y are regularization parameters, and wy(a, £) represents the weighting
factor emphasizing singular regions in w.

4. Theoretical analysis

In this section, we provide the theoretical foundation for the effectiveness of our
proposed strategy. In traditional numerical methods, R-adaptive methods alleviate
the limitations of linear reconstruction by dynamically adjusting the basis functions,
thereby reducing approximation errors. Similarly, our proposed R-adaptive DeepONet
method can also reduce the errors caused by linear reconstruction. First, we demon-
strate the feasibility of the R-adaptive DeepONet in reducing reconstruction errors.
Second, we rigorously prove the validity of the proposed method for two prototypical
PDEs. In this section, we introduce the shorthand notation A < B and B > A for the
inequality A < C'B and B > C'A, where C' denote generic constant independent of the
number of trunk net basis functions and the mesh size unless otherwise stated. The
notation A ~ B is equivalent to the statement A < B and B < A.

4.1. Reconstruction error of DeepONets
4.1.1. Bounds of the reconstruction error

In [22], the authors present a natural decomposition of DeepONets into three com-
ponents: an encoder £ that maps the infinite-dimensional input space into a finite-
dimensional space, an approximator .4, often a neural network, maps one finite-dimen-
sional space into another, and a trunk net-induced affine reconstructor R that maps the
finite-dimensional space into the infinite-dimensional output space. The total Deep-
ONet approximation error is then decomposed into encoding, approximation, and re-
construction errors.

Suppose P; : Y — span{7i(y),...,T(y)} is the projection operator that maps the
solution function space) to the linear span of trunk basis functions. The L? projection
error can be defined as

1/2
Bp, = [Py —1d 26, = (/y rrm—uwd(g#m(u)) .

R-adaptive DeepONet 41

We define the reconstruction error as EFr := inf, Fp_. The reconstruction error is
closely related to the Kolmogorov n-width [31]. According to Kolmogorov n-width
theory, we can provide a lower bound for the reconstruction error

i>n

where)\, > \,41 > --- are defined as in Theorem 2.1. This lower bound is funda-
mental as it reveals that the spectral decay rate for the covariance operator I'g,, , of
the push-forward measure essentially determines how low the approximation error of
DeepONets can be for a given output dimension n of the trunk nets. However, in prac-
tice, one does not have access to the form of the nonlinear operator G, not to mention
the covariance operator I'g, . Therefore, we aim to derive an upper bound on this
error that is easier to be analyzed.

Since the reconstruction error Er represents the projection error onto the linear
space constructed by the optimal n trunk basis functions in DeepONet, we can com-
pare Er with the projection error of a linear reconstruction system constructed using
another, possibly non-optimal, set of n basis functions. A straightforward choice for
comparison is the linear finite element reconstruction. In [16], the authors proved that
a linear finite element function in R with N degrees of freedom can be represented by
a ReLU DNN with at most O(d) hidden layers, and the number of neurons is at most
O(k?N), where x > 2 depends on the shape regularity of the underlying finite element
grid. By utilizing the basis functions and interpolation operator defined here, we can
extend this result, as stated in [16, Corollary 3.1], to the DeepONet structure.

Lemma 4.1. Suppose that 2 C Dy is a bounded domain, and My, is a locally convex
finite element mesh on) consisting of a set of simplexes and degrees of freedom n. Define
the corresponding nodal basis function as {¢1(y),...,on(y)}, and 11, the interpolation
operator on Mj,. Then there exists a ReLU-activated trunk net T : R®™> — R", with

depth(7) = O(dy), size(T) = O(k%n)

such that the reconstruction error has the upper bound Er < Eggy, where Epgy :=
1L, — Id|2(g,,) denotes the FEM interpolation error.

It is a well-known result in the FEM literature that for a convex polyhedral domain
Q) c R? and a regular finite element mesh M, the following estimate holds:

lu = Tpull 20y S P2llullz@), Yu € H?(),

where h = maxgem, diam(K'), and II;, denotes the FEM interpolation operator.
Now combining the FEM interpolation error estimate and Lemma 4.1 yields the
following upper bound of the reconstruction error.

Theorem 4.1. Suppose 2 is a bounded convex domain in R? and G defines a mapping
G : X — H?(Q). Then there exists a trunk net T : R¢ — R"™, with

42 Y. Zhu, J. Chen and W. Deng
depth(7) = O(d), size(T) = O(kn),

where k is a constant depending only on €2, and the associated reconstruction error satisfies

/2
Er < n-2/d (/y ru@mmdw#uxu)) T

Remark 4.1. The reconstruction error estimate here is based on the approach [22],
but with different basis functions, yielding similar convergence rates. Our method also
highlights the connection between FEM and ReLU-activated DeepONets, allowing us to
derive an upper bound by comparing with the linear finite element interpolation error
on a uniform mesh. However, uniform meshes may not be ideal for functions with local
singularities, as finer meshes are often needed to maintain accuracy, leading to higher
computational costs.

We denote the upper bound of the reconstruction error in Theorem 4.1 as Ex. In
the next part, we will show that our proposed R-adaptive DeepONet has the property
of reducing this upper bound of the reconstruction error.

4.1.2. R-adaptive to lessen the upper bound of the reconstruction error

Since our proposed R-adaptive DeepONet framework differs from the vanilla Deep-
ONet, we first need to define its reconstruction error.

Suppose P : Y — span{7r,1(§),...,77n(&)} is the projection operator that maps
Y to the linear span of trunk basis functions of the adaptive coordinate DeepONet 7y,,..
Similarly P 5 is the projection operator that maps) to the linear span of trunk basis

functions of the adaptive solution DeepONet G,... Then we define the reconstruction
error of the R-adaptive DeepONet as

ER* = inf |Pr,G(a) o (P T(@) ™ —1d| 12, (4.1)

TT,TQ"

where 7', G are introduced in Section 3.1, representing the ground adaptive coordinate
and solution operators respectively. Moreover, T, G satisfy G(a) o (T(a))™" = G(a). We
will explain the reason behind this definition below. The encoding error arises from
the discretization of the input parameter a. The approximation error can be viewed as
the error associated with learning the linear reconstruction coefficients 3(a), which is
primarily influenced by the branch net. On the other hand, the reconstruction error
represents the error due to the inherent linear reconstruction structure in DeepONet,
which is affected by the trunk net. Therefore, in our proposed framework with two
DeepONets, we focus solely on the error caused by the trunk net. Combining this error
with (3.1), we derived the reconstruction errors presented in (4.1).

Assume that Q C R? is polyhedral. M,, is an affine family of simplicial mesh for
), with the reference element & being chosen as an equilateral d-simplex with unit
volume. For any element K in M), we denote F : K — K as the invertible affine

R-adaptive DeepONet 43

mapping satisfying K = FK(R’). Then, for any u € H?(Q2), we have the following error
estimate for piecewise linear interpolation:

lu =Tl 720y S D IFkN" - Julfre g = Elu, M),
KeMy

where . denotes the Jacobian matrix of mapping Fy, and |u|y2(k) denotes the H 2
semi-norm of u. In [19], the authors give a lower bound of E(u, Mj,)

(d+4)/d

_ 2d/(d+4

B(u, My) > N 4/d(S K| ’) 7
KEM}L

where N is the number of the elements, and

Wi = (el)
) =\ gy)

The lower bound can be attained via an optimal mesh Mj which equidistributes the

density function py = (U&?Q/ ((;l;)r4)

mation z,, : £ — x from the original uniform simplicial mesh M, to the optimal mesh

;» which is linear on each element K € M,. Through this transform, @ = v oz,
becomes a function of £ and can be well approximated on a uniform mesh of ¢. Let I
denote the linear finite element interpolation operator on the uniform mesh of ¢ and
& : x© — & the inverse of x,, then we can bound the interpolation error by

. Note that there is a continuous coordinate transfor-

(d+4)/2d
uu—mga)osuum)sw?/d(> |K|<u>§§!{;i§4>> NS
KeM;

Here, we have applied the Euler’s formula for polyhedra [38] to address the relation-
ship between the number of elements N and the degrees of freedom n.

Based on the previous analysis, we employ ReLU trunk nets to emulate linear finite
element space over a predetermined fixed mesh, and then approximate the target func-
tion space through function composition. This allows us to derive an upper bound for
the reconstruction error. From (4.2) and Lemma 4.1, it follows that:

Theorem 4.2. Suppose Q C R? and G defines a mapping G : X — H?(Q). Then there
exists a coordinate transform DeepONet with trunk net 7 : R? — R" and a transformed
solution DeepONet with trunk net 75 : R — R", with

depth(7r) = O(d), depth(rs) = O(d),
size(Tr) = O(k%n), size(7g) = O(kn),

44 Y. Zhu, J. Chen and W. Deng

where k is a constant dependent with d, and the associated reconstruction error satisfies

EX <Eg,,[min E(u, Mp)]

h,u
= Eg## [E(u’ Mz,u)]
< minEg, [E(u, My)] < ER.
My, g

Here My, ,, means the mesh depends on u and Mj denotes the optimal mesh for each w.

By adding a coordinate transform (learned by another DeepONet with the same size
of the original model), the upper bound for the reconstruction error in the R-adaptive
DeepONet may be smaller than that of the vanilla DeepONet. This theorem implies
the reduction of the reconstruction error in the R-adaptive DeepONet compared to the
vanilla DeepONet.

4.2. Approximation properties for concrete examples

The previous subsection theoretically demonstrates that the proposed framework
can reduce the upper bound of the reconstruction error, but we do not directly show
its advantages over the vanilla DeepONet. This is because the form of the operator
G varies significantly across different problems, making it challenging to use a unified
framework for analysis. In this subsection, we select two prototypical PDEs widely used
to analyze numerical methods for transport-dominated PDEs. We rigorously prove that
the proposed method efficiently approximates operators stemming from discontinuous
solutions of PDEs, whereas vanilla DeepONets fail to do so. The chosen PDEs are the
linear advection equation and the nonlinear inviscid Burgers’ equation, which are the
prototypical examples of hyperbolic conservation laws. Detailed descriptions of the
exact operators and corresponding approximation results using both vanilla and our
proposed reconstruction methods are presented below.

4.2.1. Linear advection equation

Consider the one-dimensional linear advection equation
Ou+ad,u=0, u(-,t=0)=u 4.3)

on a 2r-periodic domain T, with constant speed ¢ € R. The underlying operator is
Gady : L*(T) — L*(T), % — Gaqy (@) := u(-,T), obtained by solving the PDE (4.3) with
initial data u up to some final time ¢t = T'. As input measure p € Prob(X), we consider
random input functions @ ~ p given by the square (box) wave of height h, width w and
centered at ¢,

ﬂc(:ﬂ) = h]l[fw/2,w/2} (ac — C) 4.4

In the following we let h = 1,w = 7, and (€ [0, 27| be uniformly distributed.

R-adaptive DeepONet 45

Following [22], we observe that the translation invariance of the problem implies
that the Fourier basis is optimal for spanning the output space. Given the discontinuous
nature of the underlying functions, the eigenvalues of the covariance operator for the
push-forward measure decay linearly at most in n. Consequently, the lower bound
implies a linear decay of error in terms of the number of trunk net basis functions. As
a consequence, the following result is established, as stated in [23].

Theorem 4.3 (Lanthaler et al. [23, Theorem 3.1]). Let n € N. For any DeepONet N'PON
with n trunk-/branch-net output functions, satisfying

sUPg,, NN (@) | e < M < o,

we have the lower bound
1/2
ENPON) = By [Gaae (1) = NPON @) 2] 2 7.

Consequently, for a given e > 0, to achieve £(NPON) < e with DeepONet, we need at least
n > e~ ! trunk and branch net basis functions.

In contrast to the previous DeepONet results, we now present an efficient approxi-
mation result for R-adaptive DeepONet.

Theorem 4.4. For any € > 0, there exist two DeepONets Ty.., ,C’;(;G, both with n trunk-/
branch-net output functions, and assume that Ty, : [-m, 7| — [, 7],§ — x(£) is bijec-
tive. Then the L?-error of the R-adaptive DeepONet system {Ty.., Gy, } satisfies

B 1/2
E = ETLNN Hgadv(a) - Q@G(ﬂ) © (%T(a))_lui2 <e

with n ~ e~ 2/3,

The detailed proof, presented in Appendix B, is based on the fact that the recon-
struction error is determined by the approximation error of the optimal reconstruction
basis functions. Therefore, if we find a set of basis functions represented by trunk nets
that satisfy the error bounds, then the approximation error of the optimal reconstruc-
tion basis functions is naturally smaller than the approximation error of this set of basis
functions. By construction, we show that the finite element basis functions on a uni-
form mesh can be represented by trunk nets and satisfies the error bounds. Hence, we
complete the proof.

4.2.2. Inviscid Burgers’ equation

Next, we consider the inviscid Burgers’ equation in one-space dimension, which is the
prototypical example of nonlinear hyperbolic conservation laws

Oyu + 0, <%u2> =0, u(,t=0)=u1q, (4.5)

46 Y. Zhu, J. Chen and W. Deng

on the 27-periodic domain T. It is well-known that discontinuities in the form of shock
waves can appear in finite time even for smooth . Consequently, solutions of (4.5) are
interpreted in the sense of distributions and entropy conditions are imposed to ensure
uniqueness. Thus, the underlying solution operator is Gpurg : L*(T) — L*(T),a
GBurg(t) = u(-,T'), with u being the entropy solution of (4.5) at final time 7. Given
¢ ~ Unif([0, 27]), we define the random field
tc(z) == —sin(z — (),
and we define the input measure y € Prob(L?(T)) as the law of u.. Then, similarly,
we can rewrite the underlying operator as Ggurg : [0,27] — L*(T),(— Gpurg(ii¢) :=
UC(-, T).

Also, translation invariance and local discontinuous can be observed in this prob-
lem. This leads to the following conclusion, as presented in [23].

Theorem 4.5 (Lanthaler et al. [23, Theorem 3.4]). Assume that Gpurg = u(-,T), for
T > m and u is the entropy solution of (4.5) with initial data @ ~ . Then the L?-error
for any DeepONet NPON with n trunk-/branch-net output functions is lower-bounded by

1
EWNPON) = Eap |[|GBurg (@) — NPV (@72 | - 207t

Consequently, for a given € > 0, achieving an error £ NPON) < ¢ requires at least n >,
—

Similar to that in the analysis of linear advection equation, in contrast to the vanilla
DeepONet, we have the following result for efficient approximation of Ggyrs with R-
adaptive DeepONet, whose proof is an almost exact repetition of the proof of Theo-
rem 4.4, which is arranged in Appendix C for convenience of the reader.

Theorem 4.6. Assume that T' > 7. For any € > 0, there exist two DeepONets Ty,., QNQG,
both with n trunk-/branch-net output functions, and assume that Ty, : [-m, 7| = [-m, 7,
¢ — x(€) is bijective. Then the L?-error of the R-adaptive DeepONet system {Tp.,Go. }
satisfies

~ 1/2
B ||Gouss () — Goc o (Tor (@) 17~ <

with n ~ e 2/3,

5. Numerical experiments

In this section, we present several numerical results to evaluate the performance of
our proposed R-adaptive DeepONet framework, comparing it with vanilla DeepONets
and Shift-DeepONets. We focus on three test problems: Burgers’ equation, commonly
used to benchmark neural operators; linear advection equations in 1D; and compress-
ible Euler equations in one dimension, which is representative of hyperbolic systems of

R-adaptive DeepONet 47

conservation laws. Through these experiments, we aim to highlight the potential ad-
vantages of the proposed framework. We use the relative L? norm as the error metric
employed throughout all numerical experiments to assess model performance. In the
next part, for simplicity, we use DON as a shorthand for DeepONet.

5.1. Linear advection equation

We take the linear advection equation (4.3) as the first example to echo our theo-
retical analysis in the previous section. Here we set {2 = [0,1] and @ = 1. The initial
data is given by (4.4) corresponding to square waves, with initial heights, widths, and
shifts uniformly distributed in [0.2,0.8], [0.05,0.3] and [0, 0.5], respectively. We aim to
learn the underlying solution operator G.qy : @ — Gadv() = u(-,T = 0.25), which maps
the initial data u to the solution at the terminal time 7" = 0.25. Since « is controlled by
a parameter (, the underlying operator is equivalent to G : { — Gaqv(t¢) = uc(-,T).
Therefore, we try to learn the map G instead of G.q4,. The training and testing samples
of the solutions for vanilla DON and Shift-DON are generated by sampling the under-
lying exact solution, which are obtained by translating the initial data sampled on 2048
uniformly distributed grids by 0.25. The training data of R-adaptive DON is obtained
by preprocessing this batch of data. We use density function

p(z) =1+ |u/(x)]? (5.1)

to obtain the equidistributed coordinate transform functions x(¢) and corresponding
adaptive solution functions 4(§) = u(x(£)). Moreover, according to (3.2) and (3.4),
we calculate the weights ws and wy for the training of the R-adaptive DON. Fig. 1
shows an example of the processed data. As can be seen from Figs. 1(a) and 1(b),
the discontinuity in the original data u(x) has been alleviated after preprocessing and
has become a smoother transition, and the corresponding coordinate transformation
function x(§) is also smooth and has no discontinuity. Furthermore, in Fig. 1(c) and
1(d), we show the calculated weights wz and wr. We can see that wgz and wr satisty
certain properties as described in Section 3. wy is relatively small in places where u
has singularities, while w is just the opposite.

1 1 100

i wr
0.8 0.8 80

0.6 0.6 0.6 60 0.6

0.4 0.4 0.4 40 04

0.2 0.2 0.2 20 02

0 0 0 0 0 0
0o 02 04 06 08 1 0 02 04 06 08 1 0o 02 04 06 08 1 0 02 04 06 08 1

(a) Initial condition and (b) Adaptive coordinate and (c) Adaptive coordinate and (d) Adaptive solution and
final output solution weight weight

Figure 1: Illustration of an example of processed data for advection equation.

48 Y. Zhu, J. Chen and W. Deng

To ensure a fair comparison, we used models with similar structures. For vanilla
DON, the main body of Shift-DON, and the two sub-DON in R-adaptive Net, we em-
ployed the same architecture: both the branch and trunk nets have 4 layers, each
containing 256 neurons. For the scale and shift nets in Shift-DON, we also used a struc-
ture of 4 layers with 256 neurons per layer. This approach ensures that the number of
parameters in each model remains comparable.

For each model, we use a training set with 1000 samples and a validation set with
200 samples. The training is performed with the ADAM optimizer, with learning rate
10~2 for 100000 epochs and a learning rate decay of 10%. We compute the relative
L?-error on the validation set every 2000 epoch. The validation error throughout the
training process is shown in Fig. 2(a).

It can seen that the validation error of the adaptive solution DON and adaptive
coordinate DON decay rapidly, ending up much lower than that of the vanilla DON.
Since the validation error indicates the ability of the model to approximate the target
dataset, it means that the adaptive solution DON and coordinate DON can approximate
their target u(¢) and z(§) well. The reason for this can be understood by examining the
eigenvalues of the covariance matrices of the target datasets. In Fig. 2(b) we show the
eigenvalues of the covariance operators of the three data sets, the original solutions
{u(x)}, the processed adaptive solution {u(£)} and coordinate transform functions
{z(£)}. As can be seen from the figure, the eigenvalues of the latter two sets decay
much faster than those of the former. From (2.4) we know that the corresponding re-
construction error is also smaller. This demonstrates that our preprocessing effectively
reduces the lower bound of the reconstruction error, highlighting the feasibility and
advantages of our proposed method.

In the testing part, we also use a data set with 200 samples to calculate the testing
error. We use the trained models to predict the solution values at 2048 grid points
uniformly distributed over [0, 1] and calculate the approximate L? error. For the testing
error of R-adaptive DON, we use one-dimensional piecewise-linear interpolation to get
the solutions on uniformly distributed grids over [0, 1] and then compare it with the
exact solutions.

vanilla DeepONet

shift DeepONet

adaptive coordinate DON
adaptive solution DON

)/

(
log(})

5 10)
0 2 4 6 8 10 x 10* 0 50 100 150 200 250 300

Figure 2: Left: The validation error of different models during training. Right: Eigenvalues of the covariance
operators of different data sets.

R-adaptive DeepONet 49

First, we show the relative testing L? error of different models trained using output
datasets with different sampling densities and verify the advantage of R-adaptive DON
that smaller output datasets can be used for good performance. Table 1 shows the
testing errors of models trained using output data sampled on 16, 32, 64, 128 uniformly
distributed grids over [0,1]. It is observed that as the number of sampling points in-
creases, the approximation performance of vanilla DON and the Shift-DON improves,
resulting in a gradual decrease in testing error. In contrast, R-adaptive DON shows
a relative insensitivity to the density of output training data, with the error remaining
relatively stable. Therefore, compared to the vanilla DON and the Shift-DON, the accu-
racy of the R-adaptive DON is less sensitive to the number of sampling points. We also
note that the R-adaptive DON trained with data sampled on 16 uniform grids achieves
prediction accuracy comparable to that of Shift-DON trained with sampled on 128 uni-
form grids. This implies that the proposed method can achieve similar accuracy with
a smaller training dataset, hence can reduce the storage requirements during training.
This advantage is particularly significant in high-dimensional situations.

Next, we present a set of numerical examples to validate the effectiveness of in-
troducing adaptive weights as described in Section 3.2. We conducted four groups of
experiments using the R-adaptive DON architecture. The training output data is sam-
pled on 2048 uniformly distributed grids over [0, 1]. In the first two groups, we only
learn the adaptive solution operator G with upper bounds of the weights: wg =1 and
wg = 2 respectively. Note that wg = 1 indicates training without using weights. In this
way, we can demonstrate the effectiveness of introducing weight wg. The results are
shown in Table 2. It can be seen that the introduction of adaptive weight wg reduces
the approximation error effectively, consistent with the analysis in Section 3.2. In the
latter two groups of experiments, we change the strategy of learning adaptive coordi-
nates while keeping the part of the adaptive solution unchanged, aiming to show the
effectiveness of introducing weight wy. The results also show that the introduction of
weight ws can improve the model’s performance.

In the end of this subsection, we provide an example of predictions from differ-
ent models to visually demonstrate that R-adaptive DON can effectively approximate

Table 1: Relative testing L? error of different models trained using data of different resolutions.

Sampling points | Vanilla DON | Shift-DON | R-adaptive DON
16 8.17x 1072 | 1.90 x 1072 6.95 x 1073
32 425 x 1072 | 1.68 x 1072 6.57 x 1073
64 2.79 %1072 | 1.13 x 1072 6.96 x 1073
128 2.46 x 1072 | 6.37 x 1073 6.62 x 1073

Table 2: Relative testing L? errors of R-adaptive DON for linear advection equation.

Model @g =1& Tground ﬂ)é =2& ZTground ﬂ)é =2&wyr=2 ﬂ)é =2 & wy =100
Error 5.75 x 107® 3.36 x 10~° 1.69 x 1072 6.54 x 1073

50 Y. Zhu, J. Chen and W. Deng

0.8 s Uground 0.8 s Uground 0.8
s Upred s Upred
0.6 0.6 0.6
0.4 0.4 0.4
A A' AvA
0.2 | 0.2 0.2
0 = o 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Prediction of vanilla DON (b) Prediction of Shift-DON (c) Prediction of R-adaptive DON
0.4 0.4 0.4
0.3 0.3 0.3
0.2 0.2 0.2
- ——W - -
0 0 L 0
0.1 0.1 0.1
0 0.2 04 06 0.8 1 0 0.2 04 06 0.8 1 0 0.2 0.4 0.6 0.8 1
(d) Error of vanilla DON (e) Error of Shift-DON (f) Error of R-adaptive DON

Figure 3: An example of the prediction results of the three models for linear advection equation.

problems with discontinuities. Here, we use the R-adaptive DON framework with the
adaptive solution DON and coordinate DON trained with adaptive weight as shown
in the last column in Table 2. From Fig. 3, it can be seen that vanilla DON does not
approximate the solution operator well, and its prediction results oscillate wildly due
to the existence of discontinuities. Both Shift-DON and R-adaptive DON can grasp the
discontinuities and approximate the smooth region well. In addition, Shift-DON leaves
small oscillations at the discontinuities, while R-adaptive does not oscillate, but natu-
rally polishes the function. Compared to Fig. 3(e), Fig. 3(f) shows larger errors near
the discontinuous point. This phenomena arises because the neural network is used to
approximate the coordinate transformation z(§), which may introduce slight inaccu-
racies, and these small deviations in coordinate learning can lead to significant errors
in the solution near discontinuities, where the values of the solution change abruptly.
The misalignment caused by the coordinate learning in R-adaptive DON can be miti-
gated by improving the accuracy of the coordinate approximation, thereby reducing its
impact in regions near discontinuities.

5.2. Viscous Burgers’ equation

Next, we consider the one-dimensional viscous Burgers’ equation

0 10 2 02
au(m,t) + §%(u(ﬂ:,t)) = u@u(:c,t), xz €[0,1], telo,1], (5.2)
u(z,0) = up(x), x € [0,1]

with periodic boundary conditions and a fixed viscosity v.

R-adaptive DeepONet 51

When the viscosity coefficient is large, the solution of the Burgers’ equation will
not exhibit significant singularities. However, as the viscosity coefficient decreases,
the solution gradually approaches that of the corresponding inviscid Burgers’ equation,
resulting in regions with large gradients. In this experiment, we use several different
viscosity coefficients such as v = 5 x 1072,1072,1073,10~*. Our goal is to learn the
solution operator mapping initial conditions wu(z,0) to the solution at 7" = 1.

To obtain a set of training data, we randomly sample 1000 input functions from
a Gaussian random field (GRF) N(0, 25%(—A+ 521)*4) and solve the Burgers’ equation
using the Chebfun package with a spectral Fourier discretization and a fourth-order
stiff time stepping scheme with a time-step size of 10~%. We generate test data sets by
sampling another 200 input functions from the same GRF. On the input side, we sample
the initial data on a uniformly distributed grid of 128 points over [0,1] as the input
parameters for training the models. The data preprocessing is similar to the previous
test, and the density function (5.1) is also used. As before, we show some examples
of the processed data in Fig. 4. When the viscosity coefficient is relatively large, the
solution does not exhibit singularities. In this case, the adaptive solution obtained

0.5 1 100 0.5 3

— T adapt —Uadapt
0.8 wr 80 ——c]
5) &//-
0.4 40

o

02 20
0.5 0 0 05 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(a) Initial condition and solution at (b) Adaptive coordinate and weight (c) Adaptive solution and weight for
t=1forv=10"2 for v =102 v=10"2
05 1 100 05
Zadapt
08 |—vr 80
06 60
0 0
0.4 40
0.2 20
-0.5 0 0 0.5 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(d) Initial condition and solution at (e) Adaptive coordinate and weight (f) Adaptive solution and weight for
t=1forv=10"3 for v =10~3 v=10"3

JE——— —_— vt
0.8 wr 80 —]

2
0.6 60
0
0.4 40
1

02 20
0.5 0 0 05 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(g) Initial condition and solution at (h) Adaptive coordinate and weight (i) Adaptive solution and weight for
t=1forv=10"% forv =10~4 v=10"4

Figure 4: Illustration of an example of processed data for Burgers’ equation.

52 Y. Zhu, J. Chen and W. Deng

through preprocessing is close to the original data, and the coordinate transformation
is approximately an identity mapping. However, as the viscosity coefficient decreases,
the adaptive solution obtained through preprocessing becomes smoother and free of
singularities compared to the original data. Additionally, we have shown the graphs of
the adaptive weights, whose properties are consistent with our analysis in Section 3.2.

We use the same network structures and training strategies as in the previous ex-
periment. The testing errors for different operator learning strategies are presented
in Table 3. As shown in the table, vanilla DON approximates the solution operator
well when the viscosity coefficient is large. As the viscosity coefficient decreases and
the solution exhibits local singularities, the performance of vanilla DON degrades. In
contrast, R-adaptive DON performs better than vanilla DON at low viscosity levels and
even achieves smaller relative errors than Shift-DON. This may indicate that R-adaptive
DON has an advantage over Shift-DON in approximating problem whose solution ex-
hibits large gradients rather than discontinuities, such as convection-dominated diffu-
sion equations. We will explore this in future work.

To illustrate the prediction results more intuitively, we present some prediction ex-
amples in Fig. 5. As seen in the figures, vanilla DON performs well in approximating
the solution when the viscosity coefficient is large, and both Shift-DON and R-adaptive

0.2 0.2

0.1 0.1
° \/ 0
-0.1 -0.1

-0.2 -0.2 -0.2

0.2

0.1

0

-0.1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) Vanilla DON for v = 10~2 (b) Shift DON for v = 10~2 (c) R-adaptive DON for v = 1072

0.2 0.2 0.2

0.1 0.1 0.1
0 0 0
-0.1 -0.1 -0.1
-0.2 -0.2 -0.2
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(d) Vanilla DON for v = 10~3 (e) Shift DON for v = 10~3 (f) R-adaptive DON for v = 103

0.2 0.2 0.2

0.1 0.1 0.1

0 0 0

-0.1 -0.1 -0.1

-0.2 -0.2

-0.2

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(g) Vanilla DON for v = 104 (h) Shift DON for v = 10—4 (i) R-adaptive DON for v = 10~

Figure 5: Illustration of an example of processed data for Burgers’ equation.

R-adaptive DeepONet

Table 3: Relative testing L? error of different models for Burgers' equation.

Model v=>5x10"2 v=10"2 v=10"3 v=10"*
Vanilla DON 541 x 1075 | 3.93x 107 | 1.00 x 1072 | 3.45 x 102
Shift-DON 158 x 1074 | 6.32x107* | 1.15x 1072 | 3.93 x 1072
R-adaptive DON | 1.31 x 107% | 4.90 x 1074 | 8.35 x 1073 | 2.44 x 1072

53

DON also provide accurate predictions. However, as the viscosity coefficient decreases,
the solution of Burgers’ equation develops a large local gradient, causing the solution
predicted by vanilla DON to oscillate, especially near the singularity region. In contrast,
both Shift- and R-adaptive DONs capture the local singularity characteristics effectively.
Additionally, as noted in Section 5.1, Shift-DON produces minor oscillations while R-
adaptive DON polishes the solutions around the singularity.

5.3. Shock tube

In this subsection, we consider the motion of an inviscid gas described by the Euler
equations of aerodynamics. The governing equations can be written as

p pu
pu| + | pu>+p | =0
E/, (E+pu

with p, u and p denoting the fluid density, velocity, and pressure. F represents the total
energy per unit volume

1 p

E = —pu?

S PU + o
where v = ¢,/c, is the gas constant which equals to 1.4 for a diatomic gas considered
here.

We restrict the equation to D = [—5, 5] and consider the initial data corresponding

to a shock tube of the form
prL,
bo =
{pR,

pL, T < Zo, ur,
pPo = Uo =
PR, T > Tq, UR,
parameterized by the left and right states (pr,ur,pr), (pr,ur,Pr), and the location

of the initial discontinuity zy. As proposed in Lye et al. [29], these parameters are, in
turn, drawn from the measure

r < T, r < X,

T > xo, x > Xo,

pr, = 0.75 + 0.45¢9(z1),
pr = 0.4+ 0.3g(22),
zo = 0.5g(26)

ur, = 0.5+ 0.5g(z23),
ug =0,

pr = 2.5+ 1.69(z4),
pr = 0.375 + 0.325g(z5),

54 Y. Zhu, J. Chen and W. Deng

with 2 = [z1,..., 2] ~ Unif([0,1]%) and g(z) = 2z — 1. We aim to approximate the
operator G : [po, pouo, Eg] — FE(1.5). As in the previous subsections, we simplify this
mapping to G : z — E(1.5).

The training (and testing) output is generated through the analytic method in [36].
The rest of the concretes are similar to those in Subsections 5.1 and 5.2. As in the
previous subsections, we first show an example of the processed data in Fig. 6.

In the testing part, for the prediction results of R-adaptive DON, we still obtained
them by piecewise linear interpolation to the uniformly distributed grids through the
output of two sub-DONs. The results are summarized in Table 4 and an example of the
output is shown in Fig. 7.

From Table 4, we can see that R-adaptive DON has stronger performance than
vanilla DON when approximating the solution of the Sod shock tube problem. And,
from Fig. 7, we can see that although the error is larger than that of Shift-DON, R-
adaptive DON can catch the discontinuity just as well as Shift-DON.

Table 4: Testing L? error of different models for Sod shocktube problem.

Model | Vanilla DON | Shift-DON | R-adaptive DON
Error | 4.77 x 107* | 2.71 x 1079 9.24 x 1075

067 8
Po \ Ey
0.5 oty 7 E
6
0.4r
5
0.3
4
0.2
3
0.1f 2
0 1
-5 0 5 -5 0 5
(a) Initial pg and ug (b) Initial Fy and the final output £
5 1T 1 100 3
Xadapt
wr
7 80 25
12
60
ot 115
40
11
20 {05
-5 — 0 1 0
-5 0 5 -5 0 5
(c) Adaptive coordinate and weight (d) Adaptive solution and weight

Figure 6: lllustration of an example of processed data for Sod shock tube problem.

R-adaptive DeepONet 55

i K_j i _; i _-;
6 6 6
4 4 4
Upred Upred . Uppred
o (7= = tmowa 5 == = Uground) - = Uground
-5 0 5 -5 0 5 -5 0 5
(a) Prediction of vanilla DON (b) Prediction of Shift DON (c) Prediction of R-adaptive DON
1.5 2 3
1.5
1 2
1
0.5 1
0.5
0 A 0 0 [
-5 0 -5 0 -5 0 5
(d) Error of vanilla DON (e) Error of Shift DON (f) Error of R-adaptive DON

Figure 7: Illustration of an example of outputs for Sod shock tube problem.

6. Conclusion and discussion

In this paper, we have proposed a DeepONet learning framework based on the
R-adaptive method to address the limitations of vanilla DeepONet representations. In-
spired by the introduction of adaptive coordinates in R-adaptive methods, our frame-
work tackles the challenge of representing problems with local singularities by sep-
arately learning the adaptive coordinate transform function and the corresponding
solution over the computation domain. Additionally, we have derived two solution-
dependent weighting strategies in the training process to reduce the final error.

We have established an upper bound on the reconstruction error of DeepONet using
error estimation from the piecewise linear interpolation and theoretically demonstrated
that our R-adaptive DeepONet framework can reduce this upper bound, indicating its
potential for problems with local singularities or discontinuities.

In numerical experiments, we selected several typical partial differential equations
with local singularities and used the R-adaptive DeepONet to solve them. We com-
pared its results with those of vanilla DeepONet and Shift-DeepONet. It is shown that
R-adaptive DeepONet generally outperforms vanilla DeepONet with smaller approxi-
mation errors.

Furthermore, we observed that the Shift-DON method performs well in most cases
due to its straightforward and simple structure. However, due to its inherent reliance
on using continuous functions to approximate discontinuous solutions, it inevitably
exhibits Gibbs phenomena near points of discontinuity. Additionally, to achieve suf-
ficiently accurate solutions, Shift-DON typically requires a large amount of training

56 Y. Zhu, J. Chen and W. Deng

data to capture features such as the locations of discontinuities. Therefore, when the
training data is limited, Shift-DON may struggle to achieve the desired accuracy.

On the other hand, R-adaptive DON handles the discontinuity of PDE solutions by
introducing adaptive coordinate transformations, achieving a composite discontinuous
representation through the locally constant nature of the adaptive coordinates near
discontinuities. Both the adaptive solution and the adaptive coordinates are relatively
smooth functions, enabling effective training with a smaller amount of data. As a re-
sult, R-adaptive DON has an advantage over Shift-DON in scenarios where adaptive
sampling is feasible, as it can achieve effective training with fewer data points. We
have also observed that in cases where the solution exhibits large gradients rather than
discontinuities, R-adaptive DON outperforms Shift-DON. We will conduct further re-
search on this point in the future.

Acknowledgments

The authors wish to thank the referees for their constructive suggestions and com-
ments that helped us to improve the presentation of this work.

This work was partially supported by the NSF of China (Grant 12171237), by the
Ministry of Science and Technology of China (Grant 2020YFA0713803), and by the
NSFC Major Research Plan (Grants 92270001, 92370205).

Appendix A. A brief introduction to R-adaptive method and
equidistribution

In this appendix, we provide a brief introduction to the R-adaptive method and its
associated equidistribution principle, see [4, 19] for details.

Suppose that we have a PDE with solution u(z,t), which is posed in a physical
domain Qp C R¢ with independent spatial variable = € R¢ for each time ¢. Conceptu-
ally, an R-adaptive method generates a moving mesh, continuously mapping a suitable
computational space ()¢ into 2p. To achieve this, we assume that a computational co-
ordinate ¢ € R? is continuously mapped to the physical coordinate so that z = x(¢, t).
The basis of the R-adaptive methods is that a fixed set of mesh grids (with fixed con-
nectivity) in ¢ is moved by this map to a moving set of grids in Q2p where the solution
is developing an interesting structure. As a result, a fixed set of basis functions (corre-
sponding to the fixed mesh grids) in Q¢ is mapped to the adaptive basis functions in
Qp for each t. We write the function in computational coordinate £ corresponding to
u(z,t) as a(&,t) = u(x(€,t),t). The structure of the function set {a(&,t)}; is much less
complicated than {u(z,t)};, allowing us to linearly reconstruct {a(¢,t)}; with fewer
basis functions than {u(x,t)}.

The equidistribution principle plays a fundamental role in the mesh adaptation pro-
cess. This concept, originating from de Boor [11], is a powerful method for identifying
a suitable mapping. To implement it, we introduce a (time-dependent) Stieltjes mea-

R-adaptive DeepONet 57

sure p(z,t)dz into the physical domain. The scalar function p(z,t) > 0, known as the
mesh density specification function (or monitor function), is designed to be large in
regions of {p where the mesh grids need to be clustered. This function is often defined
indirectly via the solution, such that p(z,t) = p(z,u(z,t), Vu(z,t),...,t). We do not
consider the specific choice of the function p here. More detailed discussions can be
found in [19].

Now introduce an arbitrary non-empty set K C ()¢ in the computational domain,
with a corresponding image set z(K,t) C Qp. The map z(-,t) equidistributes the
respective density function p if the Stieltjes measure of K and = (K, ¢) normalized over
the measure of their respective domains are the same. This implies that

[d€ B fw(K’t) p(x,t)dz
ch de fﬂp p(z,t)dr

It follows from a change of variables that

Jxd€ _ [p(@(&:),)T (&, 1)|dg
ch d¢ fﬂp p(x, t)dx ’

where

J(€,t) = det <8x§§’ t)> .

As the set K is arbitrary, the map x(, ¢) must obey the identity

x,t)dx
p(z(&,t),t)|J(§,t)| = fQPj{:(idg)

We shall refer to (A.1) as the equidistribution equation, and it must always be satisfied
by the map z(&, t). By solving the mesh equation (A.1) and the original problem simul-
taneously, we can obtain the adaptive mesh and the corresponding adaptive solution.

=:0(t). (A.1)

Appendix B. Proof of Theorem 4.4

Recall that with initial data @ = @ (- —), the solution at t = T" can be written as

g(ﬁc)(.%') = ﬁ(.%' —al — C) =]1[7#/2,7r/2}(x —al — C)

Given § > 0, let

2 2 2

1) 1)
_ - 24l _ar-— “ofz=-2_-Z_ T—
50(90 2+2 a C>+6a<x 5 "3 @ C),

gg(ﬂc)(x):%0<x—|—g+é—aT—(>—%J(:ﬂ—i—z—é—aT—()

58 Y. Zhu, J. Chen and W. Deng

where o is the rectified linear unit (ReLU). We have that G5 — G as 6 — 0, or

x 1)

/2 2
1G5(a) — G(@)|2 = 4/0 (5) dr=2. va~p ®B.1)

Since ¢ is arbitrary, we can try to approximate Gs instead of G. We divide the proof into
the following four steps:

Step 1: In the first step, we divide the object operator G5 into two parts. For each
i ~ u, we introduce a coordinate transform

x=xz(&):[-m,n] — [-7, 7]

to its image function Gs(u), referred to as u for convenience, satisfying the equidistri-
bution relation (pz¢)e = 0, for the mesh density function

pla) = VI T (% — 2mo)a,

and the boundary conditions z(—7) = —m, z(m) = 7. So we can get the object function
in the transformed variable @(§) = u(z(&)). For example, when (= —aT, i.e.

1 T 0 1 T 94
U(m)zga rHg5+g) 5o lrtg -3

O T N
s\ Ty T\ T T
we have that

x(g):—w+<2—2;5> (§+ﬂ)+<;5—2>0<5+3z>+(”%)“(“%)

BTy (2 D) (e),
a<s>=§a(5+§§>_§a<g+g 2

Note that for each u, there is a unique @(¢) and a strictly increasing x({) corresponding
to it. Let us call these two mappings G and T, respectively, as G : u — a(§), T : 4
z(€). So the objective operator Gj is divided into two parts, Gs(u) = G(u) o (T (@)~ .

Step 2: Let {¢; = —m + i2w/n}}" , be the uniform grid nodes on [—=, 7|, and {¢;}
be the corresponding piecewise-linear basis functions. For a given (¢), define its finite
element interpolation @ := > ,u(&;)¢;. Note that 4 itself is piece-linear, with four
corner points that are 7/2 apart. So u; is equal to u in the intervals without corner
points. Suppose that a corner point is &; + 1 € [{;,&;11], without loss of generality, we
assume that the slope on its left is 0 and right is 2/x. The L? error on [¢;, ;1] can be

R-adaptive DeepONet 59

estimated as
n
2

R n 2 2m/n
ja-a, = i+ [
[£5:€5+1] 0 n 7T
BRI AR PR B

2

(2—W—n>5—%(5—n)

n

So we have
i — g || 2 m) < O %2,

where C' = /87/3 since there are only four corner points.

Since piecewise linear functions can be represented by ReLU neural networks, there
is a neural network 7 : R — R"*!, mapping ¢ to (¢o(&), ..., dn(€)) precisely. And by
the universal approximation property of the neural networks, given arbitrary ¢ > 0,
there exists a neural network 3 : L'(T) U L*>(T) — R"*! such that

sup [|B(a) — (@(&o), - - - U(&n))lli= < e

urp
Then,
IG(@) = B(a) - ()| L2,
<l =gz + l|ar = B(@) - 7()|2
<n32 4 = <n¥2,

Let QGG be a DeepONet with trunk net 7 and branch net 3, then we have

1G (@) = Gog (@) p2fm.m) S 022 (B.2)

Step 3: For z(¢), define its finite element interpolation

w1(€) ==Y w(&)di()-
=0

Since x(€) is strictly increasing, we denote its inverse as £7(z). &;(x) is linear in each
interval [z;,x;11], where x; = z(&;), and §;(z;) = &(x;) = &; for each i, where £(x) is
the inverse of z(§). So &;(x) is equal to {(z) in those [x;, z;11] without corner points.
Suppose a corner point of x(§) is §; + 1 € [{;,&;+1], without loss of generality, we
assume that the slope on its left is 2 — 26 /7 and right is 26 /7.

For simplicity, let k; = 2 — 2§/, ke = 25 /7. We can calculate that the corner point
is (§ +m,z; + kin), and

2w
Tjy1 ij—i-klﬁ—i-kg <? —77> .

60 Y. Zhu, J. Chen and W. Deng

So we have
x(g):{mg—fj)w, § €&+l
r1(§) = k3(§ — &) + zj, £ € 6,81,
where
ks = 2£ <k177+k‘2 (2—7T —77>> :
™ n
Correspondingly,
kil(x—%‘)Jrﬁja T € [z, 25 + k),
§(1‘) = 1
k—2(ﬂf —x;— ki) +&+n, T € [T+ kin,vi41],
1
r(x) = k—g(w—xj)Jrfw T € [z, xj41).

Then the L? error on [z, ;4] with respect to x can be estimated as

&) = &r(@) 72

zjj41]

= [lete) - aPas

/mj-i-km
Tj+1 1 1
—i—/ <———> r—x;—k
;L-j+k177 k2 k3 (J 1"7)

J
kin | /1 1 2 1 ko (27 /n—n)
= — — —)i di+
/0 <k‘1 k‘3> /0

1 (k1 — ko) (21 /1 — n)?
3 ki +ke(27/n —n)
1(ky — k)2 (27 2
(2)
1(ky — k)2 4 [27\°
e ()
2/

2
dx

2
dx

2

IN

IN

/{?1 2_7 n
Since (k1 — k2)*/k1 — 2w as § — 0, we have the result

1€() —fI(CU)HLFI < p8/2,

~Y
o%j+1]

R-adaptive DeepONet 61

Similar to Step 2, we can build a DeepONet 7,. such that

[(T@)™ = (Top @), Sn 2 (B.3)

[=m,7]

Step 4: It is obvious that

1G (@) — Gog () o (Top (@) | 2

< ||G(@) — Gs(@)|l 2 + || Gs(@) — G, (@) © (T, (@) 7] 2

< ||g(a) — Gs(a) ||L2+|\ga o (T(w) ™" = G(u) o (Top (@) | 2
+|G(@) o (To, (@) ™" = Gog: (1) © (Top (@) | 2

=:I1; + I, +1s.

From (B.1), it follows that I; = §/6. For I, from (B.3), it follows that
2
I < Lip(G(a)(&))||(T ~ (Tor (@)~ (@)]| 2 £ =02

Further, for I3, from (B.2), it follows that

Iy = /T G (@) o (Toy (@) (x) = Gog (1) © (Top (w) ()| *da

Hence,
5 0 2 2
60 = ool o (o @) 4 (2 20)37+ 202

Since ¢ is arbitrary, we have the final result

Hg(ﬁ) - g~9c(ﬁ) °© (%T(a))_1HL2 S n_3/27 Y ~ .

Appendix C. Proof of Theorem 4.6

It is well known that the inviscid Burgers’ equation can be solved using the method
of characteristics. For general initial data u(x) = —sin(x — (), the solution u(x,t) is
given by

o= [~ o 22
—sm(\I’T (m—()), if =>¢,

62 Y. Zhu, J. Chen and W. Deng

where
Ur(x0) = 2o — T'sin(zo — ()

is the characteristic mapping associated with the initial data.

Similar to the proof of Theorem 4.4, we first approximate the solution of the equa-
tion using a simple continuous function. Here, we take the case u(z) = —sin(x — ()
as an example. For the more general case of u(x) = —sin(x — (), we can leverage
the translation invariance property of the Burgers’ equation to obtain similar results by
shifting the solution accordingly.

At time ¢t = T > 1, characteristic curves intersect at x = , leading to the formation
of a shock and causing the solution to become discontinuous at that point. To address
this discontinuity, we employ a continuous function to approximate the solution.

Given 0 > 0, we define a continuous function us(z) on the interval [0, 2] satisfying
the following conditions:

1. For x € [0,7m — 6] U [r + 6,27, the function us(x) coincides with the original
solution u(z,T)

us(x) =u(z,T), x€[0,m—05Ul[r+0,2n].

2. In the interval |7 — 0, + §], the function us(x) is defined as a linear function that
smoothly connects the values at x = 7 — ¢ and = = 7 + §, ensuring continuity of
the approximation.

As § — 0, the function us(z) converges to the discontinuous solution wu(z,T).
Specifically, for any ¢; > 0, there exists § > 0 such that

lus — u(, T3 < e1.

This ensures that the continuous approximation us(x) can approach the original solu-
tion u(z, T) in the L?-norm as closely as desired, depending on the choice of J.

Thus, we provide an approximation Gs of the Burgers’ equation solution operator
GOBurg, Where Gs(u) = us, and

||g5(a) - gBurg(ﬂ)H% < €1, Va ~ L.

Then, similar to the Step 1 in Appendix B, we now divide the operator G5 into two parts.
Consider again the initial condition u(x) = —sin(z — 7). We introduce a coordinate
transform z = z(§) : [0,2x] — [0, 2x], satisfying the equidistribution relation for the

mesh density function
p(x) = 1+uZ

with the boundary conditions z(0) = 0 and z(27) = 27. To handle the discontinuity
at x = m, we truncate the mesh density function p(x) so that it remains constant for
x € [0,m—0]U[r+46, 2x]. This truncation is reasonable because the gradient of u; in the
interval [— §, 7 + d] is large, significantly different from that in [0, 7 — 0] U [7 + 9, 27].

R-adaptive DeepONet 63

After truncation, we set the value of p(x) in [0, 7 — 6] U [7 + 4, 27| such that its ratio
to the value in [r — 6,7 + 0] is § : (w — J). Then we have

) T
4 §7 66_071]7
5 7'(' (7 37
o6 = ym oz (e). fe_?ﬂv
7T+5+47T_5<§_3_7T>7 EE 3_7T727Tv
L 0 4 | 4 _
([in (wot (470 0.7
51n<\I’T <4 - £—|—7T>>, e _0,4],
a(&) = { linear Ee -E 3—7T
U(é)—) _45 4—5
an(wo (54T (o3 Ei
\ sm<\I/T <5—|—4 - <§ 4>>>, §€_4,27T:|.

By this approach, we decompose us(x) into two parts, and the gradients of both z(¢)
and u(¢) can be well controlled. The remainder of the proof follows similar steps as the
linear transport equation case and is omitted here.

References

[1] W. BANGERTH AND R. RANNACHER, Adaptive finite element methods for differential equa-
tions, Lectures in Mathematics ETH Ziirich, Birkh&user Verlag, 2003.

[2] K. BHATTACHARYA, B. HOSSEINI, N. B. KOVACHKI, AND A. M. STUART, Model reduction
and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021), 121-157.

[3] J. BLECHSCHMIDT AND O. G. ERNST, Three ways to solve partial differential equations with
neural network — A review, GAMM-Mitt. 44 (2021), e202100006.

[4] C. J. BuDD AND J. F. WILLIAMS, Moving mesh generation using the parabolic Monge-
Ampeére equation, SIAM J. Sci. Comput. 31 (2009), 3438-3465.

[5] S. Ca1, Z. MAO, Z. WANG, M. YIN, AND G. E. KARNIADAKIS, Physics-informed neural
networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin. 37 (2021), 1727-1738.

[6] S.Cal, Z. WANG, L. Lu, T. A. ZAKI, AND G. E. KARNIADAKIS, DeepM & Mnet: Inferring the
electroconvection multiphysics fields based on operator approximation by neural networks,
J. Comput. Phys. 436 (2021), 110296.

[7]1 H. D. CENICEROS AND T. Y. HOU, An efficient dynamically adaptive mesh for potentially
singular solutions, J. Comput. Phys. 172 (2001), 609-639.

[8] T. CHEN AND H. CHEN, Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems, IEEE Trans.
Neural Networks Learn. Syst. 6 (1995), 911-917.

[9] P. CLARK D1 LEONI, L. Lu, C. MENEVEAU, G. E. KARNIADAKIS, AND T. A. ZAKI, Neural
operator prediction of linear instability waves in high-speed boundary layers, J. Comput.
Phys. 474 (2023), 111793.

[10] C. M. DAFERMOS AND C. M. DAFERMOS, Hyperbolic Conservation Laws in Continuum
Physics, Vol. 3, Springer, 2005.

64

[11]

[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]
[30]

[31]
[32]

Y. Zhu, J. Chen and W. Deng

C. DE BOOR, Good approximation by splines with variable knots. II, in: Conference on the
Numerical Solution of Differential Equations, Lecture Notes in Mathematics, Vol. 363,
Springer, (1974), 12-20.

V. DOLEJST AND M. FEISTAUER, Discontinuous Galerkin Method. Analysis and Applications
to Compressible Flow, Springer Series in Computational Mathematics, Vol. 48, Springer,
2015.

W. E, Machine learning and computational mathematics, Commun. Comput. Phys. 28
(2020), 1639-1670.

W. E AND B. YU, The deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems, Commun. Math. Stat. 6 (2018), 1-12.

P. S. HADORN, Shift-Deeponet: Extending Deep Operator Networks for Discontinuous Out-
put Functions, ETH Zurich, Seminar for Applied Mathematics, 2022.

J. HE, L. L1, J. Xu, AND C. ZHENG, ReLU deep neural networks and linear finite elements,
J. Comput. Math. 38 (2020), 502-527.

J. S. HESTHAVEN AND S. UBBIALI, Non-intrusive reduced order modeling of nonlinear prob-
lems using neural networks, J. Comput. Phys. 363 (2018), 55-78.

B. HUANG AND J. WANG, Applications of physics-informed neural networks in power systems
— A review, IEEE Trans. Power Syst. 38 (2023), 572-588.

W. HUANG AND R. D. RUSSELL, Adaptive Moving Mesh Methods, Applied Mathematical
Sciences, Vol. 174, Springer, 2011.

Y. KHOO, J. LU, AND L. YING, Solving parametric PDE problems with artificial neural net-
works, Eur. J. Appl. Math. 32 (2021), 421-435.

S. KOLLMANNSBERGER ET AL., Deep Learning in Computational Mechanics, Springer, 2021.
S. LANTHALER, S. MISHRA, AND G. E. KARNIADAKIS, Error estimates for DeepONets: A deep
learning framework in infinite dimensions, Trans. Math. Appl. 6 (2022), doi:10.1093/
imatrm/tnac001.

S. LANTHALER, R. MOLINARO, P. HADORN, AND S. MISHRA, Nonlinear Reconstruction for
Operator Learning of PDEs with Discontinuities, Tech. Rep. 2022-42, Seminar for Applied
Mathematics, ETH Ziirich, 2022.

S. LANTHALER AND A. M. STUART, The curse of dimensionality in operator learning, arXiv:
2306.15924, 2023.

J. Y. LEE, S. W. CHO, AND H. J. HWANG, Hyperdeeponet: Learning operator with com-
plex target function space using the limited resources via hypernetwork, arXiv:2312.15949,
2023.

Z. LI ET AL., Fourier Neural Operator for Parametric Partial Differential Equations, in:
International Conference on Learning Representations, 2021.

C. LIN, M. MAXEY, Z. L1, AND G. E. KARNIADAKIS, A seamless multiscale operator neural
network for inferring bubble dynamics, J. Fluid Mech. 929 (2021), A18.

L. Lu, P. JIN, G. PANG, Z. ZHANG, AND G. E. KARNIADAKIS, Learning nonlinear operators
via deeponet based on the universal approximation theorem of operators, Nat. Mach. Intell.
3 (2021), 218-229.

K. O. LyE, S. MISHRA, AND D. RAY, Deep learning observables in computational fluid
dynamics, J. Comput. Phys. 410 (2020), 109339.

Z. MAo, A. D. JAGTAP, AND G. E. KARNIADAKIS, Physics-informed neural networks for
high-speed flows, Comput. Methods Appl. Mech. Engrg. 360 (2020), 112789.

A. PINKUS, N-Widths in Approximation Theory, Springer Science & Business Media, 1985.
M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear

R-adaptive DeepONet 65

[33]

[34]
[35]
[36]
[37]

[38]
[39]

partial differential equations, J. Comput. Phys. 378 (2019), 686-707.

J. SEIDMAN, G. KiSSAS, P. PERDIKARIS, AND G. J. PAPPAS, Nomad: Nonlinear manifold
decoders for operator learning, in: Advances in Neural Information Processing Systems,
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds), Vol. 35, Curran
Associates Inc., (2022), 5601-5613.

J. SIRIGNANO AND K. SPILIOPOULOS, DGM: A deep learning algorithm for solving partial
differential equations, J. Comput. Phys. 375 (2018), 1339-1364.

T. TANG, R. LI, AND Z. ZHANG, Moving Mesh Methods for Partial Differential Equations,
Science Press, 2023.

E. F. TORO, Riemann solvers and numerical methods for fluid dynamics: A practical intro-
duction, Springer Science & Business Media, 2013.

S. VENTURI AND T. CASEY, SVD perspectives for augmenting DeepONet flexibility and inter-
pretability, Comput. Methods Appl. Mech. Engrg. 403 (2023), 115718.

D. B. WEST, Introduction to Graph Theory, Prentice Hall Inc., 1996.

M. YIN, E. ZHANG, Y. YU, AND G. E. KARNIADAKIS, Interfacing finite elements with deep
neural operators for fast multiscale modeling of mechanics problems, Comput. Methods
Appl. Mech. Engrg. 402 (2022), 115027.

