
Numer. Math. Theor. Meth. Appl. Vol. 18, No. 1, pp. 31-65

doi: 10.4208/nmtma.OA-2024-0124 February 2025

Yameng Zhu1, Jingrun Chen2 and Weibing Deng1,

R-Adaptive DeepONet: Learning Solution

Operators for PDEs with Discontinuous

Solutions Using an R-Adaptive Strategy

*

1 School of Mathematics, Nanjing University, Nanjing 210093, P.R. China
2 School of Mathematical Sciences and Suzhou Institute for Advanced Research,

University of Science and Technology of China, Suzhou 215127, P.R. China

Received 24 October 2024; Accepted (in revised version) 7 January 2025

Abstract. When DeepONet approximates solution operators of partial differential

equations (PDEs) with discontinuous solutions, it poses a foundational approxima-
tion lower bound due to its linear reconstruction property. Inspired by the mov-

ing mesh method, we propose an R-adaptive DeepONet method, which consists of:

(1) the output data representation is transformed from the physical domain to the
computational domain using the equidistribution principle; (2) the maps from in-

put parameters to the solution and the coordinate transformation function over the
computational domain are learned using DeepONets separately; (3) the solution

over the physical domain is obtained via post-processing methods such as the inter-

polation method. Additionally, we introduce a solution-dependent weighting strat-
egy in the training process to reduce the error. We establish an upper bound for the

reconstruction error based on piecewise linear interpolation and show that the intro-

duced R-adaptive DeepONet can reduce this bound. Moreover, for two prototypical
PDEs with sharp gradients or discontinuities, we prove that the approximation error

decays at a superlinear rate with respect to the trunk basis size, unlike the linear
decay observed in vanilla DeepONets. Numerical experiments on several PDEs with

discontinuous solutions are conducted to verify the advantages of the R-adaptive

DeepONet over available variants of DeepONet.

AMS subject classifications: 47-08, 47H99, 65D15, 65M50, 68Q32, 68T05, 68T07

Key words: Scientific machine learning, neural operators, DeepONet, R-adaptive method.

1. Introduction

Many interesting phenomena in physics and engineering are described by partial

differential equations whose solutions contain sharp gradient regions or discontinuities.

∗Corresponding author. Email addresses: dg21210022@smail.nju.edu.cn (Y. Zhu), jingrunchen@ustc.

edu.cn (J. Chen), wbdeng@nju.edu.cn (W. Deng)

http://www.global-sci.org/nmtma 31 ©2025 Global-Science Press

32 Y. Zhu, J. Chen and W. Deng

The most common types of such PDEs are hyperbolic systems of conservation laws [10],

such as Euler equations, inviscid Burgers’ equation, etc. It is well-known that solutions

of these PDEs develop finite-time discontinuities such as shock waves, even when the

initial and boundary data are smooth. Other examples include convection-dominated

equations, reaction-diffusion equations, and so on. It is challenging for traditional

numerical methods because resolving these discontinuities, such as shock waves and

contact discontinuities, requires petite grid sizes. Moreover, characterizing geometric

structures, especially in terms of effectively suppressing numerical oscillations near dis-

continuous interfaces and maintaining the steepness of transition interfaces, is difficult.

Specialized numerical methods such as adaptive finite element methods [1] and dis-

continuous Galerkin finite element methods [12] have been successfully used in this

context, but their high computational cost limits their wide use.

At the same time, data-driven approaches are becoming a competitive and viable

means for solving these challenging problems. Deep neural networks (DNNs) have

shown promising potential for solving both forward and inverse problems associated

with PDEs [3]. Numerous researchers have explored methods that utilize DNNs for

solving PDEs (see [13,21] and references therein).

Machine learning for PDEs primarily focuses on learning solutions by training a map-

ping from the computational domain to the solution. This process, known as the so-

lution parameterization, encompasses techniques such as the deep Ritz method [14],

deep Galerkin method [34], and physics informed neural networks (PINNs) [5, 32].

These methods utilize DNNs to represent the solution and integrate the PDE informa-

tion into the loss function. The approximate solution is obtained by minimizing the

loss function. Since proposed, these methods have been successfully applied to solve

both forward and inverse problems for various linear and nonlinear PDEs [5, 18, 30].

Note that these approaches are tailored to specific instances of PDEs. Consequently, if

the coefficients or initial conditions associated with the PDEs change, the model has to

be retrained, resulting in poor generalization ability across different PDEs.

Along another line, there is ongoing work on parameterizing the solution map us-

ing DNNs, referred to as operator learning [2, 8, 17, 20, 26, 28]. In [8], Chen and

Chen introduced a novel learning architecture based on neural networks, termed op-

erator networks, and demonstrated that these operator networks possess an aston-

ishing universal approximation property for infinite-dimensional nonlinear operators.

Recently, the authors of [28] replaced the shallow branch and trunk networks in oper-

ator networks with DNNs and proposed the deep operator network (DeepONet). Since

proposed, it has been successfully applied to a variety of problems with differential

equations [6, 9, 27, 39]. In [26], Li et al. proposed Fourier neural operators based on

a nonlinear generalization of the kernel integral representation for some operators and

makes use of the convolutional or Fourier network structure.

Although DeepONets have demonstrated good performance across diverse appli-

cations, some studies have pointed out that DeepONets fail to efficiently approximate

solution operators of PDEs with sharp gradients or discontinuities [22,24]. In [22], the

authors gave a fundamental lower bound on the approximation error of DeepONets and

R-adaptive DeepONet 33

show that there are fundamental barriers to the expressive power of operator learning

methods based on linear reconstruction. This is of particular relevance for problems

in which the optimal lower bound exhibits a slow decay in terms of the number of

basis functions n, due to the slow decay of the eigenvalues of the covariance operator.

To reduce the approximation error, the resolution must be high enough, i.e., we need

a large n. However, this may lead to a dramatic increase in computing costs. Therefore,

a method with a small approximation error and moderate computational cost is highly

desirable.

Variants of DeepONets have been developed to overcome this limitation. Hadorn

[15] investigated the behavior of DeepONet to understand the challenges in detecting

sharp features in the target function when the number of basis n is small. They pro-

posed Shift-DeepONet, which adds two neural networks to shift and scale the input

function. Venturi and Casey [37] analyzed the limitations of DeepONet using singu-

lar value decomposition and proposed a flexible DeepONet (flexDeepONet) by adding

a pre-net and an additional output in the branch net. Seidman et al. [33] introduced

a nonlinear manifold decoder (NOMAD) framework, utilizing a neural network that

takes the output of the branch net as input along with the query location. Recently,

Lee et al. [25] proposed a HyperDeepONet, which leverages the expressive power of

hypernetworks to learn complex operators with a smaller set of parameters. These

methods address the limitations of linear reconstruction by modifying the structure of

DeepONet, allowing the trunk basis to incorporate information about the input param-

eters.

Traditional numerical methods, such as finite difference method and finite element

method (FEM), rely on the linear reconstruction using a linear space of basis functions

over a predefined mesh to approximate the solution. For solutions with sharp gradi-

ents or discontinuities, a fine mesh is needed to resolve local singularities which may

lead to significant computational time and data storage. Therefore, researchers have

introduced the moving mesh (R-adaptive) method to adaptively and automatically op-

timize and adjust mesh configurations based on solution characteristics, see [19, 35]

and references therein. The core concept involves adjusting grid distribution through

strategic methods without altering the number of mesh grids and their topological con-

nections. This process ensures grids concentrate in regions where solution variations

are pronounced. Consequently, this adaptive approach enhances numerical simulation

accuracy without increasing computational costs.

To overcome the limitation of linear reconstruction in DeepONet, in this study, we

propose a new framework inspired by the moving mesh method, called R-adaptive

DeepONet. It employs different learning strategies while maintaining the vanilla struc-

ture in the original DeepONet. To this end, we introduce a solution-dependent coor-

dinate transformation from the physical domain to the computational domain. The

transformed coordinates are then used as the input to the trunk net, similar to tra-

ditional R-adaptive methods. This enables adaptive adjustment of basis functions in

DeepONet based on the property of the output solution. Specifically, we first transform

the representation of the output data from the physical domain to the computational

34 Y. Zhu, J. Chen and W. Deng

domain using the equidistribution principle. This yields two output datasets: the co-

ordinate transform function and the solution over the computational domain. Second,

we use two DNN models to learn the maps from the input parameters to the coordinate

transform function and the solution over the computational domain separately. We em-

phasize that while learning the forward coordinate transformation from the physical to

the computational domain can ensure the injectivity, it retains the singularity of the

original solution which is difficult to learn. Therefore, we propose an alternative ap-

proach using inverse coordinate transform learning. Although the inverse coordinate

transformation does not guarantee a bijection, the functions over the output domain are

smoother, making it easier to learn. Given the choice of the inverse coordinate trans-

form, directly predicting the solution value for a given arbitrary coordinate becomes

impractical. Thus, we finally recover the solution using post-processing methods such

as the (linear) interpolation method. It is worth mentioning that, according to the error

analysis of the operator composition, we introduce two novel solution-related weights

to the training process of each component.

We establish an upper bound for the reconstruction error using piecewise linear

interpolation and demonstrate that our proposed R-adaptive DeepONet can reduce this

bound. Additionally, we rigorously prove that R-adaptive DeepONet can efficiently

approximate the prototypical PDEs with sharp gradients or discontinuities. Specifically,

the approximation error decays at a superlinear rate with respect to the trunk basis

size, while the vanilla DeepONet exhibits at best the linear decay rate [22].

To illustrate the effectiveness of our approach, we compare the performance of

several DeepONet models for the linear advection equation, the Burgers’ equation with

low viscosity, and the compressible Euler equations of gas dynamics. The results consis-

tently demonstrate that our R-adaptive DeepONet outperforms vanilla DeepONet and

competes effectively with Shift DeepONet.

The remainder of this paper is structured as follows. In Section 2, we give a brief

introduction to DeepONet. And then discuss the details of the R-adaptive DeepONet

in Section 3. In Section 4, we show some theoretical results. In Section 5, we present

some numerical results. Finally, some conclusions and comments are given.

2. Operator learning and DeepONet

2.1. Problem setting

The goal of operator learning is to learn a mapping from one infinite-dimensional

function space to another by using a finite collection of observations of input-output

pairs from this mapping. We formalize this problem as follows. Let X and Y be two

Banach spaces of functions defined on bounded domains DX ⊂ R
dX ,DY ⊂ R

dY respec-

tively and G : X → Y be a (typically) non-linear map. Suppose we have observations

{a(i), u(i)}Ni=1 where a(i) ∼ µ are i.i.d. samples drawn from some probability measure

µ supported on X and u(i) = G(a(i)). We aim to build an approximation of G by con-

structing a parametric map Gθ : X → Y with parameters θ ∈ R
para such that Gθ ≈ G.

R-adaptive DeepONet 35

Sometimes the input function space X can be parameterized by a finite dimensional

vector space X̄ . Thus, the original objective operator G : X → Y can also be equiv-

alently expressed as Ḡ : X̄ → Y. For example, if we consider the mapping from the

initial density, velocity, and pressure (ρ0, u0, p0) to the energy E at some time T in the

sod shock tube problem, we can parameterize the initial data by the left and right states

(ρL, uL, pL), (ρR, uR, pR) and the location of the initial discontinuity x0. In this case, the

input function space is equivalent to a 7-dimensional vector space. For convenience,

we still write G : X → Y instead of distinguishing between G and Ḡ.

We are interested in controlling the error of the approximation of the average for µ.

In particular, assuming G is µ-measurable, we aim to control the L2
µ(X ;Y) Bochner

norm of the approximation as follows:

‖G − Gθ‖L2
µ(X ;Y) := Ea∼µ‖G(a) − Gθ(a)‖

2
Y =

∫

X

‖G(a) − Gθ(a)‖
2
Y dµ(a). (2.1)

2.2. A brief introduction to DeepONet

DeepONets [28] present a specialized deep learning architecture for operator learn-

ing that encapsulates the universal approximation theorem for operators [8]. Here we

provide a brief introduction to the effective application of DeepONets for learning op-

erators.

To construct a DeepONet, we first need to encode the input parameter function.

In [28], the authors use a fixed collection of training sensors {x1, x2, . . . , xm} ⊂ DX to

encode the input function a by the point values E(a) := E(a(x1), a(x2), . . . , a(xm)) in

R
m. As we mentioned before, sometimes the input function space X contains a finite-

dimensional parameterization and we can encode a ∈ X by this parameterization di-

rectly. DeepONet is formulated in terms of two neural networks:

(1) Branch-net β: it maps the point values E(a) to coefficients

β
(

E(a)
)

=
(

β1(E(a)), . . . , βn(E(a))
)

,

resulting in a mapping

β : Rm → R
n, E(a) 7→ β

(

E(a)
)

. (2.2)

(2) Trunk-net τ (y) = (τ1(y), . . . , τn(y)): it is used to define a mapping

τ : DY → R
n, y 7→ τ (y). (2.3)

While the branch net provides the coefficients, the trunk net provides the “basis”

functions in an expansion of the output function of the form

GDON(a)(y) =
n
∑

k=1

βk(a)τk(y), a ∈ X , y ∈ DY

with βk(a) = βk(E(a)). The resulting mapping GDON : X → Y, a 7→ GDON(a) is referred

to as the vanilla DeepONet.

36 Y. Zhu, J. Chen and W. Deng

Limitation of DeepONet. Although DeepONets have been proven to be universal

within the class of measurable operators [22], a fundamental lower bound on the ap-

proximation error has also been identified.

Theorem 2.1 (Lanthaler et al. [22, Theorem 3.4]). Let X be a separable Banach space,

Y a separable Hilbert space, and let µ be a probability measure on X . Let G : X → Y
be a Borel measurable operator with Ea∼µ[‖G(a)‖

2
Y] < ∞. Then the following lower

approximation bound holds for any DeepONet N DON with trunk-/branch-net dimension n:

E(N DON) := Ea∼µ

[

‖N DON(a)− G(a)‖2Y

]1/2
≥ Eopt =:

√

∑

j>n

λj , (2.4)

where the optimal error Eopt is written in terms of the eigenvalues λ1 ≥ λ2 ≥ · · · of the

covariance operator ΓG#µ
:= Eu∼G#µ

[(u⊗ u)] of the push-forward measure G#µ.

The same lower bound applies to any operator approximation of the form N (a) =
∑n

k=1 βk(a)τk, where βk : X → R are arbitrary functionals. This bound, for exam-

ple, also holds for the PCA-Net architecture discussed in [2, 17]. In [23], the authors

referred to any operator learning architecture of this form as a method with “linear re-

construction”, since the output function N (a) is restricted to the linear n-dimensional

space spanned by the τ1, . . . , τn ∈ Y.

When the eigenvalues λ1 ≥ λ2 ≥ · · · of the covariance operator ΓG#µ
decay slowly,

approximation using DeepONet may become inaccurate. For instance, the solution

operators of advection PDEs and the Burgers’ equation are challenging to approximate

accurately when using DeepONet with a small number of basis functions n (see [23]).

2.3. Variant models of DeepONet

Several variants of DeepONet have been developed to overcome its limitations.

Hadorn [15] proposed the Shift-DeepONet. The main idea is that a scale net A =
(Ak)

n
k=1,

A : Rm → R
n×dY×dY , E(a) 7→ A(a) :=

(

A1(a), A2(a), . . . , An(a)
)

,

where Ak(a) is matrix-valued functions, and a shift net γ = (γk)
n
k=1, with

γk : Rm → R
n×dY , E(a) 7→ γ(a) :=

(

γ1(a), γ2(a), . . . , γn(a)
)

to scale and shift the input query position y, while retaining the DeepONet branch- and

trunk-nets β, τ defined in (2.2) and (2.3), respectively. The Shift-DeepONet N sDON is

an operator of the form

N sDON(a)(y) =

n
∑

k=1

βk(a)τk
(

Ak(a) · y + γk(a)
)

.

R-adaptive DeepONet 37

This approach incorporates the information of the input parameter function a into the

trunk basis, allowing the Shift-DeepONet to overcome the limitations of linear recon-

struction.

Similar to the Shift-DeepONet, Venturi & Casey proposed the flexible DeepONet

(flexDeepONet) [37], using the additional network, pre-net, to give the bias between

the input layer and the first hidden layer, thus introducing the information of a to the

trunk basis. NOMAD, developed by Seidman et al. [33], devised a nonlinear output

manifold using a neural network that takes the output of the branch net {βi}
n
i=1 and

the query location y, to overcome the limitation of vanilla DeepONet. Lee et al. [25]

went a step further. They used a hypernetwork to share the information of input a to

all parameters of the trunk network and proposed a general model HyperDeepONet.

All these methods incorporate information from the input function a into the trunk

basis to overcome the limitation of linear reconstruction. In practical performance,

they do not differ significantly. To validate the effectiveness of our proposed method,

we use Shift DeepONet as a representative among these models to compare with the

R-adaptive DeepONet in this paper.

3. Proposed methodology: R-adaptive DeepONet

3.1. R-adaptive DeepONet

Many traditional numerical methods rely on linear reconstruction and encounter

similar limitations when facing local singularities. R-adaptive methods, also known as

moving mesh methods, effectively alleviate these issues. In R-adaptive computations,

the number of basis functions remains fixed, but they dynamically adjust based on the

problem characteristics. This adaptation reduces errors without significantly increasing

computational costs. In Appendix A, we provide a brief introduction to the R-adaptive

method and its associated equidistribution principle.

Inspired by the R-adaptive method, we propose a new learning strategy based on

DeepONet for operator learning of PDEs with local singularity, termed R-adaptive Deep-

ONet.

Formally, given G : X → Y, a 7→ u(y), we introduce a homeomorphism ỹ = y(ξ) :
DY → DY , ξ 7→ y(ξ), which maps the computational domain to the physics domain.

This allows us to divide the original operator into two new operators as follows:

T : a 7→ ỹ(ξ) and G̃ : a 7→ ũ(ξ) = u
(

ỹ(ξ)
)

,

where T maps a to the coordinate transform function ỹ = y(ξ), and G̃ defines the map

to the solution in the computational domain. The original object operator to be learned

can be represented as

G(a)(y) = G̃(a) ◦
(

T (a)
)−1

(y), (3.1)

where (T (a))−1 : y 7→ ξ(y) represents the inverse function of ỹ = y(ξ). Since the

objective operator G(a) can be represented by these two operators, we can use two

38 Y. Zhu, J. Chen and W. Deng

independent DeepONets to learn these two operators as follows:

TθT ≈ T : a 7→ y(ξ) and G̃θG ≈ G̃ : a 7→ ũ(ξ),

where θT and θG represent the parameters of the two models, respectively. For clarity,

we will refer to T as the adaptive coordinate operator and G̃ as the adaptive solu-

tion operator. The corresponding TθT and G̃θG are termed the adaptive coordinate and

adaptive solution DeepONets respectively. Together, the pair {TθT , G̃θG} is then called

an R-adaptive DeepONet system.

Since our approach is data-driven, generating appropriate training data for the

models TθT and G̃θG using the equidistribution principle is crucial. Given observations

{a(i), u(i)}Ni=1, we first preprocess the sampled data. This involves determining the cor-

responding coordinate transform function y(i)(ξ) for each target function u(i)(y) and

obtaining the solution on the computational domain ũ(i)(ξ). As a result, we generate

training data sets {a(i), {y(i)(ξj)}}
N
i=1 and {a(i), {ũ(i)(ξj)}}

N
i=1 for the two independent

models, respectively. In this step, we use the mesh generator proposed by Ceniceros and

Hou [7]. Other mesh generation methods can be found in [19]. We emphasize that for

problems with discontinuous solutions, the R-adaptive DeepONet needs smaller train-

ing datasets than other DeepONets since the output functions y(ξ) and ũ(ξ) are both

smooth, which allow sparser sampling data to capture most features of them.

Here, we choose to learn the mapping from a to y(ξ) instead of ξ(y), since the

coordinate transform y 7→ ξ(y) retains the singularity of the output function, while the

inverse ξ 7→ y(ξ) is relatively smooth, and thus is easier to learn. Our goal is to obtain

the output function in terms of y, but the prediction process yields two functions in

terms of ξ. To determine the value of u at y, we must first find the corresponding ξ and

use it as the input of the learned G̃(a) to predict the function value. However, due to the

black-box nature of neural networks, deducing the input ξ from output y is challenging.

Consequently, post-processing is necessary to make accurate predictions. After training,

we have two independent models mapping the input a to two functions of ξ. Given

a fixed a and ξ ∈ DY , we can get a pair {y(ξ), ũ(ξ)}, which forms a mesh grid in

the graph of u = G(a). By using a uniform mesh {ξj} as the input of the trunk net, we

generate a set of points {y(ξj), ũ(ξj)} that provides a discrete representation of u. These

points are densely distributed in places where u has singularity, and sparsely distributed

in places where u is smooth, hence effectively capturing the function u. Using these

discrete points, we can reconstruct the output function u by the local interpolation

method.

3.2. Training settings

In Section 2.1, we set the target to minimize the L2
µ(X ;Y) Bochner norm of the

approximation (see (2.1)). In our model, if we assume that the adaptive coordinate

operator T is known and only consider learning the mapping G̃θG , the corresponding

approximation error E
G̃

can be written as follows:

E
G̃
=
∥

∥G − G̃θG ◦ T −1
∥

∥

L2
µ(X ;Y)

R-adaptive DeepONet 39

= Ea∼µ

∥

∥G(a)− G̃θG(a)((T (a))−1
∥

∥

2

Y

= Ea∼µ

∫

DY

∣

∣G(a)(y) − G̃θG(a)((T (a))−1(y))
∣

∣

2
dy

= Ea∼µ

∫

DY

∣

∣G̃(a)(ξ) − G̃θG(a)(ξ)
∣

∣

2∣
∣det(J(T (a)(ξ)))

∣

∣dξ.

Therefore, in the loss function, we naturally introduce the weight |det(J(T (a)(ξ)))|. To

prevent this weight from being zero or too large, we modify it to

w
G̃
(a, ξ) := min

{

M,
√

1 + |det(J(T (a)(ξ)))|2
}

, (3.2)

where M is the upper bound we set for this weight, and |det(J(T (a)(ξ)))| for weight

computing is obtained from the data pre-processing. Therefore, in the training process,

we aim to minimize the weight empirical loss function

L
G̃
:=

1

N1 ×N2

N1
∑

k=1

N2
∑

j=1

∣

∣ũk(ξj)− G̃θG(ak)(ξj)
∣

∣

2
w
G̃
(ak, ξj), (3.3)

where N1 denotes the number of sampled inputs ak, and N2 denotes the number of

sensors ξj . Generally, according to the equidistribution principle, w
G̃
(a, ξ) is relatively

small in places where u has singularities. This weighting ensures that the model train-

ing is more concentrated over the areas where u is smooth.

In parallel, we can write the approximation error of T as

ET =
∥

∥G − G̃ ◦ T −1
θT

∥

∥

L2
µ(X ;Y)

= Ea∼µ

∫

DY

∣

∣G(a)(y) − G(a)(TθT (a) ◦ (T (a))−1 (y))
∣

∣

2
dy

= Ea∼µ

∫

DY

∣

∣G(a)(y) − G(a)(TθT (a)(ξ))
∣

∣

2∣
∣det(J(T (a)(ξ)))

∣

∣dξ

≈ Ea∼µ

∫

DY

∣

∣∇G(a)
∣

∣

2∣
∣y − TθT (a)(ξ)

∣

∣

2∣
∣det(J(T (a)(ξ)))

∣

∣dξ.

So the corresponding weight can be chosen as

wT (a, ξ) := min
{

M̄,
√

1 + |∇G(a)|4|det(J(T (a)(ξ)))|2
}

, (3.4)

where M̄ is the upper bound we set for this weight. The density function is usually

of the form ρ =
√

1 + β|∇u|2, where β is a constant. According to (A.1), we can see

that |det(J(T (a)(ξ)))| is inversely proportional to ρ. So here we can see that wT (a, ξ)
computed according to (3.4) has the opposite performance to w

G̃
(a, ξ). wT (a, ξ) is

small in places where u is smooth and large in places where u has singularities.

Moreover, for convenience and accuracy of post-processing, a well-structured mesh

is crucial. The coordinate transform functions learned by DeepONet do not inherently

40 Y. Zhu, J. Chen and W. Deng

guarantee untangling. To prevent mesh tangling, it is essential to ensure that the Ja-

cobian determinant of the transformation function y(ξ) satisfies det(J(TθT (a)(ξ))) > 0.
Therefore, we incorporate a regularization term into the loss function of the coordinate

learning process. The modified loss function becomes

LT :=
1

N1 ×N2

N1
∑

k=1

N2
∑

j=1

[

α1|ỹk(ξj)− TθT (ak)(ξj)|
2wT (ak, ξj)

+ α2ReLU2 (−det(J(TθT (ak)(ξj))))
]

, (3.5)

where α1 and α2 are regularization parameters, and wT (a, ξ) represents the weighting

factor emphasizing singular regions in u.

4. Theoretical analysis

In this section, we provide the theoretical foundation for the effectiveness of our

proposed strategy. In traditional numerical methods, R-adaptive methods alleviate

the limitations of linear reconstruction by dynamically adjusting the basis functions,

thereby reducing approximation errors. Similarly, our proposed R-adaptive DeepONet

method can also reduce the errors caused by linear reconstruction. First, we demon-

strate the feasibility of the R-adaptive DeepONet in reducing reconstruction errors.

Second, we rigorously prove the validity of the proposed method for two prototypical

PDEs. In this section, we introduce the shorthand notation A . B and B & A for the

inequality A ≤ CB and B ≥ CA, where C denote generic constant independent of the

number of trunk net basis functions and the mesh size unless otherwise stated. The

notation A ≃ B is equivalent to the statement A . B and B . A.

4.1. Reconstruction error of DeepONets

4.1.1. Bounds of the reconstruction error

In [22], the authors present a natural decomposition of DeepONets into three com-

ponents: an encoder E that maps the infinite-dimensional input space into a finite-

dimensional space, an approximator A, often a neural network, maps one finite-dimen-

sional space into another, and a trunk net-induced affine reconstructor R that maps the

finite-dimensional space into the infinite-dimensional output space. The total Deep-

ONet approximation error is then decomposed into encoding, approximation, and re-

construction errors.

Suppose Pτ : Y → span{τ1(y), . . . , τn(y)} is the projection operator that maps the

solution function space Y to the linear span of trunk basis functions. The L2 projection

error can be defined as

EPτ := ‖Pτ − Id‖L2(G#µ) =

(
∫

Y

‖Pτu− u‖2d(G#µ)(u)

)1/2

.

R-adaptive DeepONet 41

We define the reconstruction error as ER := infτ EPτ . The reconstruction error is

closely related to the Kolmogorov n-width [31]. According to Kolmogorov n-width

theory, we can provide a lower bound for the reconstruction error

ER ≥

√

∑

j>n

λj ,

where λn ≥ λn+1 ≥ · · · are defined as in Theorem 2.1. This lower bound is funda-

mental as it reveals that the spectral decay rate for the covariance operator ΓG#µ
of

the push-forward measure essentially determines how low the approximation error of

DeepONets can be for a given output dimension n of the trunk nets. However, in prac-

tice, one does not have access to the form of the nonlinear operator G, not to mention

the covariance operator ΓG#µ
. Therefore, we aim to derive an upper bound on this

error that is easier to be analyzed.

Since the reconstruction error ER represents the projection error onto the linear

space constructed by the optimal n trunk basis functions in DeepONet, we can com-

pare ER with the projection error of a linear reconstruction system constructed using

another, possibly non-optimal, set of n basis functions. A straightforward choice for

comparison is the linear finite element reconstruction. In [16], the authors proved that

a linear finite element function in R
d with N degrees of freedom can be represented by

a ReLU DNN with at most O(d) hidden layers, and the number of neurons is at most

O(κdN), where κ ≥ 2 depends on the shape regularity of the underlying finite element

grid. By utilizing the basis functions and interpolation operator defined here, we can

extend this result, as stated in [16, Corollary 3.1], to the DeepONet structure.

Lemma 4.1. Suppose that Ω ⊂ DY is a bounded domain, and Mh is a locally convex

finite element mesh on Ω consisting of a set of simplexes and degrees of freedom n. Define

the corresponding nodal basis function as {φ1(y), . . . , φn(y)}, and Πh the interpolation

operator on Mh. Then there exists a ReLU-activated trunk net τ : RdY → R
n, with

depth(τ) = O(dY), size(τ) = O(κdYn)

such that the reconstruction error has the upper bound ER ≤ EFEM, where EFEM :=
‖Πh − Id‖L2(G#µ) denotes the FEM interpolation error.

It is a well-known result in the FEM literature that for a convex polyhedral domain

Ω ⊂ R
d and a regular finite element mesh Mh, the following estimate holds:

‖u−Πhu‖L2(Ω) . h2‖u‖H2(Ω), ∀u ∈ H2(Ω),

where h = maxK∈Mh
diam(K), and Πh denotes the FEM interpolation operator.

Now combining the FEM interpolation error estimate and Lemma 4.1 yields the

following upper bound of the reconstruction error.

Theorem 4.1. Suppose Ω is a bounded convex domain in R
d and G defines a mapping

G : X → H2(Ω). Then there exists a trunk net τ : Rd → R
n, with

42 Y. Zhu, J. Chen and W. Deng

depth(τ) = O(d), size(τ) = O(κdn),

where κ is a constant depending only on Ω, and the associated reconstruction error satisfies

ER . n−2/d

(∫

Y

|u|2H2(Ω)d(G#µ)(u)

)1/2

=: ER.

Remark 4.1. The reconstruction error estimate here is based on the approach [22],

but with different basis functions, yielding similar convergence rates. Our method also

highlights the connection between FEM and ReLU-activated DeepONets, allowing us to

derive an upper bound by comparing with the linear finite element interpolation error

on a uniform mesh. However, uniform meshes may not be ideal for functions with local

singularities, as finer meshes are often needed to maintain accuracy, leading to higher

computational costs.

We denote the upper bound of the reconstruction error in Theorem 4.1 as ER. In

the next part, we will show that our proposed R-adaptive DeepONet has the property

of reducing this upper bound of the reconstruction error.

4.1.2. R-adaptive to lessen the upper bound of the reconstruction error

Since our proposed R-adaptive DeepONet framework differs from the vanilla Deep-

ONet, we first need to define its reconstruction error.

Suppose PτT : Y → span{τT ,1(ξ), . . . , τT ,n(ξ)} is the projection operator that maps

Y to the linear span of trunk basis functions of the adaptive coordinate DeepONet TθT .

Similarly Pτ
G̃

is the projection operator that maps Y to the linear span of trunk basis

functions of the adaptive solution DeepONet G̃θG. Then we define the reconstruction

error of the R-adaptive DeepONet as

ERA
R := inf

τT ,τ
G̃

∥

∥Pτ
G̃
G̃(a) ◦ (PτT T (a))−1 − Id

∥

∥

L2(µ)
, (4.1)

where T , G̃ are introduced in Section 3.1, representing the ground adaptive coordinate

and solution operators respectively. Moreover, T , G̃ satisfy G̃(a) ◦ (T (a))−1 = G(a). We

will explain the reason behind this definition below. The encoding error arises from

the discretization of the input parameter a. The approximation error can be viewed as

the error associated with learning the linear reconstruction coefficients β(a), which is

primarily influenced by the branch net. On the other hand, the reconstruction error

represents the error due to the inherent linear reconstruction structure in DeepONet,

which is affected by the trunk net. Therefore, in our proposed framework with two

DeepONets, we focus solely on the error caused by the trunk net. Combining this error

with (3.1), we derived the reconstruction errors presented in (4.1).

Assume that Ω ⊂ R
d is polyhedral. Mh is an affine family of simplicial mesh for

Ω, with the reference element K̂ being chosen as an equilateral d-simplex with unit

volume. For any element K in Mh, we denote FK : K̂ → K as the invertible affine

R-adaptive DeepONet 43

mapping satisfying K = FK(K̂). Then, for any u ∈ H2(Ω), we have the following error

estimate for piecewise linear interpolation:

‖u−Πhu‖
2
L2(Ω) .

∑

K∈Mh

‖F ′
K‖4 · |u|2H2(K) =: E(u,Mh),

where F ′
K denotes the Jacobian matrix of mapping FK , and |u|H2(K) denotes the H2

semi-norm of u. In [19], the authors give a lower bound of E(u,Mh)

E(u,Mh) ≥ N−4/d

(

∑

K∈Mh

|K|〈u〉
2d/(d+4)
H2(K)

)(d+4)/d

,

where N is the number of the elements, and

〈u〉H2(K) =

(

1

|K|
|u|2H2(K)

)1/2

.

The lower bound can be attained via an optimal mesh M∗
h which equidistributes the

density function ρK = 〈u〉
2d/(d+4)
H2(K)

. Note that there is a continuous coordinate transfor-

mation xu : ξ 7→ x from the original uniform simplicial mesh Mh to the optimal mesh

M∗
h, which is linear on each element K ∈ Mh. Through this transform, ũ = u ◦ xu

becomes a function of ξ and can be well approximated on a uniform mesh of ξ. Let Πξ

denote the linear finite element interpolation operator on the uniform mesh of ξ and

ξu : x 7→ ξ the inverse of xu, then we can bound the interpolation error by

‖u− (Πξũ) ◦ ξu‖L2(Ω) . n−2/d

(

∑

K∈M∗
h

|K|〈u〉
2d/(d+4)
H2(K)

)(d+4)/2d

. (4.2)

Here, we have applied the Euler’s formula for polyhedra [38] to address the relation-

ship between the number of elements N and the degrees of freedom n.

Based on the previous analysis, we employ ReLU trunk nets to emulate linear finite

element space over a predetermined fixed mesh, and then approximate the target func-

tion space through function composition. This allows us to derive an upper bound for

the reconstruction error. From (4.2) and Lemma 4.1, it follows that:

Theorem 4.2. Suppose Ω ⊂ R
d and G defines a mapping G : X → H2(Ω). Then there

exists a coordinate transform DeepONet with trunk net τT : Rd → R
n and a transformed

solution DeepONet with trunk net τ
G̃
: R → R

n, with

depth(τT) = O(d), depth(τ
G̃
) = O(d),

size(τT) = O(κdn), size(τ
G̃
) = O(κdn),

44 Y. Zhu, J. Chen and W. Deng

where κ is a constant dependent with d, and the associated reconstruction error satisfies

ERA
R ≤ EG#µ

[

min
Mh,u

E(u,Mh,u)
]

= EG#µ

[

E(u,M∗
h,u)
]

≤ min
Mh

EG#µ
[E(u,Mh)] ≤ ER.

Here Mh,u means the mesh depends on u and M∗
h,u denotes the optimal mesh for each u.

By adding a coordinate transform (learned by another DeepONet with the same size

of the original model), the upper bound for the reconstruction error in the R-adaptive

DeepONet may be smaller than that of the vanilla DeepONet. This theorem implies

the reduction of the reconstruction error in the R-adaptive DeepONet compared to the

vanilla DeepONet.

4.2. Approximation properties for concrete examples

The previous subsection theoretically demonstrates that the proposed framework

can reduce the upper bound of the reconstruction error, but we do not directly show

its advantages over the vanilla DeepONet. This is because the form of the operator

G varies significantly across different problems, making it challenging to use a unified

framework for analysis. In this subsection, we select two prototypical PDEs widely used

to analyze numerical methods for transport-dominated PDEs. We rigorously prove that

the proposed method efficiently approximates operators stemming from discontinuous

solutions of PDEs, whereas vanilla DeepONets fail to do so. The chosen PDEs are the

linear advection equation and the nonlinear inviscid Burgers’ equation, which are the

prototypical examples of hyperbolic conservation laws. Detailed descriptions of the

exact operators and corresponding approximation results using both vanilla and our

proposed reconstruction methods are presented below.

4.2.1. Linear advection equation

Consider the one-dimensional linear advection equation

∂tu+ a∂xu = 0, u(·, t = 0) = ū (4.3)

on a 2π-periodic domain T, with constant speed a ∈ R. The underlying operator is

Gadv : L2(T) → L2(T), ū 7→ Gadv(ū) := u(·, T), obtained by solving the PDE (4.3) with

initial data ū up to some final time t = T . As input measure µ ∈ Prob(X), we consider

random input functions ū ∼ µ given by the square (box) wave of height h, width w and

centered at ζ,

ūζ(x) = h1[−ω/2,ω/2](x− ζ). (4.4)

In the following we let h = 1, w = π, and ζ ∈ [0, 2π] be uniformly distributed.

R-adaptive DeepONet 45

Following [22], we observe that the translation invariance of the problem implies

that the Fourier basis is optimal for spanning the output space. Given the discontinuous

nature of the underlying functions, the eigenvalues of the covariance operator for the

push-forward measure decay linearly at most in n. Consequently, the lower bound

implies a linear decay of error in terms of the number of trunk net basis functions. As

a consequence, the following result is established, as stated in [23].

Theorem 4.3 (Lanthaler et al. [23, Theorem 3.1]). Let n ∈ N. For any DeepONet NDON

with n trunk-/branch-net output functions, satisfying

supū∼µ‖N
DON(ū)‖L∞ ≤ M < ∞,

we have the lower bound

E(NDON) := Eū∼µ

[

‖Gadv(ū)−NDON(ū)‖2L2

]1/2
& n−1.

Consequently, for a given ǫ > 0, to achieve E(NDON) ≤ ǫ with DeepONet, we need at least

n & ǫ−1 trunk and branch net basis functions.

In contrast to the previous DeepONet results, we now present an efficient approxi-

mation result for R-adaptive DeepONet.

Theorem 4.4. For any ǫ > 0, there exist two DeepONets TθT , G̃θG , both with n trunk-/

branch-net output functions, and assume that TθT : [−π, π] → [−π, π], ξ 7→ x(ξ) is bijec-

tive. Then the L2-error of the R-adaptive DeepONet system {TθT , G̃θG} satisfies

E := Eū∼µ

[

‖Gadv(ū)− G̃θG(ū) ◦ (TθT (ū))
−1‖2L2

]1/2
≤ ǫ

with n ≃ ǫ−2/3.

The detailed proof, presented in Appendix B, is based on the fact that the recon-

struction error is determined by the approximation error of the optimal reconstruction

basis functions. Therefore, if we find a set of basis functions represented by trunk nets

that satisfy the error bounds, then the approximation error of the optimal reconstruc-

tion basis functions is naturally smaller than the approximation error of this set of basis

functions. By construction, we show that the finite element basis functions on a uni-

form mesh can be represented by trunk nets and satisfies the error bounds. Hence, we

complete the proof.

4.2.2. Inviscid Burgers’ equation

Next, we consider the inviscid Burgers’ equation in one-space dimension, which is the

prototypical example of nonlinear hyperbolic conservation laws

∂tu+ ∂x

(

1

2
u2
)

= 0, u(·, t = 0) = ū, (4.5)

46 Y. Zhu, J. Chen and W. Deng

on the 2π-periodic domain T. It is well-known that discontinuities in the form of shock

waves can appear in finite time even for smooth ū. Consequently, solutions of (4.5) are

interpreted in the sense of distributions and entropy conditions are imposed to ensure

uniqueness. Thus, the underlying solution operator is GBurg : L2(T) → L2(T), ū 7→
GBurg(ū) = u(·, T), with u being the entropy solution of (4.5) at final time T . Given

ζ ∼ Unif([0, 2π]), we define the random field

ūζ(x) := − sin(x− ζ),

and we define the input measure µ ∈ Prob(L2(T)) as the law of ūζ . Then, similarly,

we can rewrite the underlying operator as GBurg : [0, 2π] → L2(T), ζ 7→ GBurg(ūζ) :=
uζ(·, T).

Also, translation invariance and local discontinuous can be observed in this prob-

lem. This leads to the following conclusion, as presented in [23].

Theorem 4.5 (Lanthaler et al. [23, Theorem 3.4]). Assume that GBurg = u(·, T), for

T > π and u is the entropy solution of (4.5) with initial data ū ∼ µ. Then the L2-error

for any DeepONet NDON with n trunk-/branch-net output functions is lower-bounded by

E(NDON) := Eū∼µ

[

‖GBurg(ū)−NDON (ū)‖2L2

]1/2
& n−1.

Consequently, for a given ǫ > 0, achieving an error E(NDON) . ǫ requires at least n &

ǫ−1.

Similar to that in the analysis of linear advection equation, in contrast to the vanilla

DeepONet, we have the following result for efficient approximation of GBurg with R-

adaptive DeepONet, whose proof is an almost exact repetition of the proof of Theo-

rem 4.4, which is arranged in Appendix C for convenience of the reader.

Theorem 4.6. Assume that T > π. For any ǫ > 0, there exist two DeepONets TθT , G̃θG ,

both with n trunk-/branch-net output functions, and assume that TθT : [−π, π] → [−π, π],
ξ 7→ x(ξ) is bijective. Then the L2-error of the R-adaptive DeepONet system {TθT , G̃θG}
satisfies

Eū∼µ

[

‖GBurg(ū)− G̃θG ◦ (TθT (ū))
−1‖2L2

]1/2
≤ ǫ

with n ≃ ǫ−2/3.

5. Numerical experiments

In this section, we present several numerical results to evaluate the performance of

our proposed R-adaptive DeepONet framework, comparing it with vanilla DeepONets

and Shift-DeepONets. We focus on three test problems: Burgers’ equation, commonly

used to benchmark neural operators; linear advection equations in 1D; and compress-

ible Euler equations in one dimension, which is representative of hyperbolic systems of

R-adaptive DeepONet 47

conservation laws. Through these experiments, we aim to highlight the potential ad-

vantages of the proposed framework. We use the relative L2 norm as the error metric

employed throughout all numerical experiments to assess model performance. In the

next part, for simplicity, we use DON as a shorthand for DeepONet.

5.1. Linear advection equation

We take the linear advection equation (4.3) as the first example to echo our theo-

retical analysis in the previous section. Here we set Ω = [0, 1] and a = 1. The initial

data is given by (4.4) corresponding to square waves, with initial heights, widths, and

shifts uniformly distributed in [0.2, 0.8], [0.05, 0.3] and [0, 0.5], respectively. We aim to

learn the underlying solution operator Gadv : ū 7→ Gadv(ū) = u(·, T = 0.25), which maps

the initial data ū to the solution at the terminal time T = 0.25. Since ū is controlled by

a parameter ζ, the underlying operator is equivalent to G : ζ 7→ Gadv(ūζ) := uζ(·, T).
Therefore, we try to learn the map G instead of Gadv. The training and testing samples

of the solutions for vanilla DON and Shift-DON are generated by sampling the under-

lying exact solution, which are obtained by translating the initial data sampled on 2048
uniformly distributed grids by 0.25. The training data of R-adaptive DON is obtained

by preprocessing this batch of data. We use density function

ρ(x) =
√

1 + |u′(x)|2 (5.1)

to obtain the equidistributed coordinate transform functions x(ξ) and corresponding

adaptive solution functions ũ(ξ) = u(x(ξ)). Moreover, according to (3.2) and (3.4),

we calculate the weights w
G̃

and wT for the training of the R-adaptive DON. Fig. 1

shows an example of the processed data. As can be seen from Figs. 1(a) and 1(b),

the discontinuity in the original data u(x) has been alleviated after preprocessing and

has become a smoother transition, and the corresponding coordinate transformation

function x(ξ) is also smooth and has no discontinuity. Furthermore, in Fig. 1(c) and

1(d), we show the calculated weights w
G̃

and wT . We can see that w
G̃

and wT satisfy

certain properties as described in Section 3. w
G̃

is relatively small in places where u
has singularities, while wT is just the opposite.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Initial condition and
final output

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Adaptive coordinate and
solution

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

(c) Adaptive coordinate and
weight

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(d) Adaptive solution and
weight

Figure 1: Illustration of an example of processed data for advection equation.

48 Y. Zhu, J. Chen and W. Deng

To ensure a fair comparison, we used models with similar structures. For vanilla

DON, the main body of Shift-DON, and the two sub-DON in R-adaptive Net, we em-

ployed the same architecture: both the branch and trunk nets have 4 layers, each

containing 256 neurons. For the scale and shift nets in Shift-DON, we also used a struc-

ture of 4 layers with 256 neurons per layer. This approach ensures that the number of

parameters in each model remains comparable.

For each model, we use a training set with 1000 samples and a validation set with

200 samples. The training is performed with the ADAM optimizer, with learning rate

10−3 for 100000 epochs and a learning rate decay of 10%. We compute the relative

L2-error on the validation set every 2000 epoch. The validation error throughout the

training process is shown in Fig. 2(a).

It can seen that the validation error of the adaptive solution DON and adaptive

coordinate DON decay rapidly, ending up much lower than that of the vanilla DON.

Since the validation error indicates the ability of the model to approximate the target

dataset, it means that the adaptive solution DON and coordinate DON can approximate

their target ũ(ξ) and x(ξ) well. The reason for this can be understood by examining the

eigenvalues of the covariance matrices of the target datasets. In Fig. 2(b) we show the

eigenvalues of the covariance operators of the three data sets, the original solutions

{u(x)}, the processed adaptive solution {ũ(ξ)} and coordinate transform functions

{x(ξ)}. As can be seen from the figure, the eigenvalues of the latter two sets decay

much faster than those of the former. From (2.4) we know that the corresponding re-

construction error is also smaller. This demonstrates that our preprocessing effectively

reduces the lower bound of the reconstruction error, highlighting the feasibility and

advantages of our proposed method.

In the testing part, we also use a data set with 200 samples to calculate the testing

error. We use the trained models to predict the solution values at 2048 grid points

uniformly distributed over [0, 1] and calculate the approximate L2 error. For the testing

error of R-adaptive DON, we use one-dimensional piecewise-linear interpolation to get

the solutions on uniformly distributed grids over [0, 1] and then compare it with the

exact solutions.

 0 2 4 6 8 10 104
-5

-4

-3

-2

-1

0

1

vanilla DeepONet
shift DeepONet
adaptive coordinate DON
adaptive solution DON

0 50 100 150 200 250 300
-10

-5

0

5

10

15

Figure 2: Left: The validation error of different models during training. Right: Eigenvalues of the covariance
operators of different data sets.

R-adaptive DeepONet 49

First, we show the relative testing L2 error of different models trained using output

datasets with different sampling densities and verify the advantage of R-adaptive DON

that smaller output datasets can be used for good performance. Table 1 shows the

testing errors of models trained using output data sampled on 16, 32, 64, 128 uniformly

distributed grids over [0, 1]. It is observed that as the number of sampling points in-

creases, the approximation performance of vanilla DON and the Shift-DON improves,

resulting in a gradual decrease in testing error. In contrast, R-adaptive DON shows

a relative insensitivity to the density of output training data, with the error remaining

relatively stable. Therefore, compared to the vanilla DON and the Shift-DON, the accu-

racy of the R-adaptive DON is less sensitive to the number of sampling points. We also

note that the R-adaptive DON trained with data sampled on 16 uniform grids achieves

prediction accuracy comparable to that of Shift-DON trained with sampled on 128 uni-

form grids. This implies that the proposed method can achieve similar accuracy with

a smaller training dataset, hence can reduce the storage requirements during training.

This advantage is particularly significant in high-dimensional situations.

Next, we present a set of numerical examples to validate the effectiveness of in-

troducing adaptive weights as described in Section 3.2. We conducted four groups of

experiments using the R-adaptive DON architecture. The training output data is sam-

pled on 2048 uniformly distributed grids over [0, 1]. In the first two groups, we only

learn the adaptive solution operator G̃ with upper bounds of the weights: w̄
G̃
= 1 and

w̄
G̃
= 2 respectively. Note that w̄

G̃
= 1 indicates training without using weights. In this

way, we can demonstrate the effectiveness of introducing weight w
G̃
. The results are

shown in Table 2. It can be seen that the introduction of adaptive weight w
G̃

reduces

the approximation error effectively, consistent with the analysis in Section 3.2. In the

latter two groups of experiments, we change the strategy of learning adaptive coordi-

nates while keeping the part of the adaptive solution unchanged, aiming to show the

effectiveness of introducing weight wT . The results also show that the introduction of

weight wT can improve the model’s performance.

In the end of this subsection, we provide an example of predictions from differ-

ent models to visually demonstrate that R-adaptive DON can effectively approximate

Table 1: Relative testing L
2 error of different models trained using data of different resolutions.

Sampling points Vanilla DON Shift-DON R-adaptive DON

16 8.17× 10−2 1.90× 10−2 6.95× 10−3

32 4.25× 10−2 1.68× 10−2 6.57× 10−3

64 2.79× 10−2 1.13× 10−2 6.96× 10−3

128 2.46× 10−2 6.37× 10−3 6.62× 10−3

Table 2: Relative testing L
2 errors of R-adaptive DON for linear advection equation.

Model w̄
G̃
= 1 & xground w̄

G̃
= 2 & xground w̄

G̃
= 2 & w̄T = 2 w̄

G̃
= 2 & w̄T = 100

Error 5.75× 10−5 3.36× 10−5 1.69× 10−2 6.54× 10−3

50 Y. Zhu, J. Chen and W. Deng

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

(a) Prediction of vanilla DON

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

(b) Prediction of Shift-DON

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

(c) Prediction of R-adaptive DON

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

0.4

(d) Error of vanilla DON

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

0.4

(e) Error of Shift-DON

0 0.2 0.4 0.6 0.8 1
-0.1

0

0.1

0.2

0.3

0.4

(f) Error of R-adaptive DON

Figure 3: An example of the prediction results of the three models for linear advection equation.

problems with discontinuities. Here, we use the R-adaptive DON framework with the

adaptive solution DON and coordinate DON trained with adaptive weight as shown

in the last column in Table 2. From Fig. 3, it can be seen that vanilla DON does not

approximate the solution operator well, and its prediction results oscillate wildly due

to the existence of discontinuities. Both Shift-DON and R-adaptive DON can grasp the

discontinuities and approximate the smooth region well. In addition, Shift-DON leaves

small oscillations at the discontinuities, while R-adaptive does not oscillate, but natu-

rally polishes the function. Compared to Fig. 3(e), Fig. 3(f) shows larger errors near

the discontinuous point. This phenomena arises because the neural network is used to

approximate the coordinate transformation x(ξ), which may introduce slight inaccu-

racies, and these small deviations in coordinate learning can lead to significant errors

in the solution near discontinuities, where the values of the solution change abruptly.

The misalignment caused by the coordinate learning in R-adaptive DON can be miti-

gated by improving the accuracy of the coordinate approximation, thereby reducing its

impact in regions near discontinuities.

5.2. Viscous Burgers’ equation

Next, we consider the one-dimensional viscous Burgers’ equation

∂

∂t
u(x, t) +

1

2

∂

∂x

(

u(x, t)
)2

= ν
∂2

∂x2
u(x, t), x ∈ [0, 1], t ∈ [0, 1],

u(x, 0) = u0(x), x ∈ [0, 1]

(5.2)

with periodic boundary conditions and a fixed viscosity ν.

R-adaptive DeepONet 51

When the viscosity coefficient is large, the solution of the Burgers’ equation will

not exhibit significant singularities. However, as the viscosity coefficient decreases,

the solution gradually approaches that of the corresponding inviscid Burgers’ equation,

resulting in regions with large gradients. In this experiment, we use several different

viscosity coefficients such as ν = 5 × 10−2, 10−2, 10−3, 10−4. Our goal is to learn the

solution operator mapping initial conditions u(x, 0) to the solution at T = 1.

To obtain a set of training data, we randomly sample 1000 input functions from

a Gaussian random field (GRF) N (0, 252(−∆+52I)−4) and solve the Burgers’ equation

using the Chebfun package with a spectral Fourier discretization and a fourth-order

stiff time stepping scheme with a time-step size of 10−4. We generate test data sets by

sampling another 200 input functions from the same GRF. On the input side, we sample

the initial data on a uniformly distributed grid of 128 points over [0, 1] as the input

parameters for training the models. The data preprocessing is similar to the previous

test, and the density function (5.1) is also used. As before, we show some examples

of the processed data in Fig. 4. When the viscosity coefficient is relatively large, the

solution does not exhibit singularities. In this case, the adaptive solution obtained

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

(a) Initial condition and solution at
t = 1 for ν = 10−2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

(b) Adaptive coordinate and weight
for ν = 10−2

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

0

1

2

3

(c) Adaptive solution and weight for
ν = 10−2

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

(d) Initial condition and solution at
t = 1 for ν = 10−3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

(e) Adaptive coordinate and weight
for ν = 10−3

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

0

1

2

3

(f) Adaptive solution and weight for
ν = 10−3

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

(g) Initial condition and solution at
t = 1 for ν = 10−4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

(h) Adaptive coordinate and weight
for ν = 10−4

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

0

1

2

3

(i) Adaptive solution and weight for
ν = 10−4

Figure 4: Illustration of an example of processed data for Burgers’ equation.

52 Y. Zhu, J. Chen and W. Deng

through preprocessing is close to the original data, and the coordinate transformation

is approximately an identity mapping. However, as the viscosity coefficient decreases,

the adaptive solution obtained through preprocessing becomes smoother and free of

singularities compared to the original data. Additionally, we have shown the graphs of

the adaptive weights, whose properties are consistent with our analysis in Section 3.2.

We use the same network structures and training strategies as in the previous ex-

periment. The testing errors for different operator learning strategies are presented

in Table 3. As shown in the table, vanilla DON approximates the solution operator

well when the viscosity coefficient is large. As the viscosity coefficient decreases and

the solution exhibits local singularities, the performance of vanilla DON degrades. In

contrast, R-adaptive DON performs better than vanilla DON at low viscosity levels and

even achieves smaller relative errors than Shift-DON. This may indicate that R-adaptive

DON has an advantage over Shift-DON in approximating problem whose solution ex-

hibits large gradients rather than discontinuities, such as convection-dominated diffu-

sion equations. We will explore this in future work.

To illustrate the prediction results more intuitively, we present some prediction ex-

amples in Fig. 5. As seen in the figures, vanilla DON performs well in approximating

the solution when the viscosity coefficient is large, and both Shift-DON and R-adaptive

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(a) Vanilla DON for ν = 10−2
0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(b) Shift DON for ν = 10−2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(c) R-adaptive DON for ν = 10−2

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(d) Vanilla DON for ν = 10−3
0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(e) Shift DON for ν = 10−3

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(f) R-adaptive DON for ν = 10−3

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(g) Vanilla DON for ν = 10−4
0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(h) Shift DON for ν = 10−4

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

(i) R-adaptive DON for ν = 10−4

Figure 5: Illustration of an example of processed data for Burgers’ equation.

R-adaptive DeepONet 53

Table 3: Relative testing L
2 error of different models for Burgers’ equation.

Model ν = 5× 10−2 ν = 10−2 ν = 10−3 ν = 10−4

Vanilla DON 5.41× 10−5 3.93× 10−4 1.00× 10−2 3.45× 10−2

Shift-DON 1.58× 10−4 6.32× 10−4 1.15× 10−2 3.93× 10−2

R-adaptive DON 1.31× 10−4 4.90× 10−4 8.35× 10−3 2.44× 10−2

DON also provide accurate predictions. However, as the viscosity coefficient decreases,

the solution of Burgers’ equation develops a large local gradient, causing the solution

predicted by vanilla DON to oscillate, especially near the singularity region. In contrast,

both Shift- and R-adaptive DONs capture the local singularity characteristics effectively.

Additionally, as noted in Section 5.1, Shift-DON produces minor oscillations while R-

adaptive DON polishes the solutions around the singularity.

5.3. Shock tube

In this subsection, we consider the motion of an inviscid gas described by the Euler

equations of aerodynamics. The governing equations can be written as





ρ
ρu
E





t

+





ρu
ρu2 + p
(E + p)u





x

= 0

with ρ, u and p denoting the fluid density, velocity, and pressure. E represents the total

energy per unit volume

E =
1

2
ρu2 +

p

γ − 1
,

where γ = cp/cv is the gas constant which equals to 1.4 for a diatomic gas considered

here.

We restrict the equation to D = [−5, 5] and consider the initial data corresponding

to a shock tube of the form

ρ0 =

{

ρL, x ≤ x0,

ρR, x > x0,
u0 =

{

uL, x ≤ x0,

uR, x > x0,
p0 =

{

pL, x ≤ x0,

pR, x > x0,

parameterized by the left and right states (ρL, uL, pL), (ρR, uR, pR), and the location

of the initial discontinuity x0. As proposed in Lye et al. [29], these parameters are, in

turn, drawn from the measure

ρL = 0.75 + 0.45g(z1), uL = 0.5 + 0.5g(z3), pL = 2.5 + 1.6g(z4),

ρR = 0.4 + 0.3g(z2), uR = 0, pR = 0.375 + 0.325g(z5),

x0 = 0.5g(z6)

54 Y. Zhu, J. Chen and W. Deng

with z = [z1, . . . , z6] ∼ Unif([0, 1]6) and g(z) = 2z − 1. We aim to approximate the

operator G : [ρ0, ρ0u0, E0] 7→ E(1.5). As in the previous subsections, we simplify this

mapping to G : z 7→ E(1.5).

The training (and testing) output is generated through the analytic method in [36].

The rest of the concretes are similar to those in Subsections 5.1 and 5.2. As in the

previous subsections, we first show an example of the processed data in Fig. 6.

In the testing part, for the prediction results of R-adaptive DON, we still obtained

them by piecewise linear interpolation to the uniformly distributed grids through the

output of two sub-DONs. The results are summarized in Table 4 and an example of the

output is shown in Fig. 7.

From Table 4, we can see that R-adaptive DON has stronger performance than

vanilla DON when approximating the solution of the Sod shock tube problem. And,

from Fig. 7, we can see that although the error is larger than that of Shift-DON, R-

adaptive DON can catch the discontinuity just as well as Shift-DON.

Table 4: Testing L
2 error of different models for Sod shocktube problem.

Model Vanilla DON Shift-DON R-adaptive DON

Error 4.77× 10−4 2.71× 10−5 9.24× 10−5

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Initial ρ0 and u0

-5 0 5
1

2

3

4

5

6

7

8

(b) Initial E0 and the final output E

-5 0 5
-5

0

5

0

20

40

60

80

100

(c) Adaptive coordinate and weight

-5 0 5
1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

(d) Adaptive solution and weight

Figure 6: Illustration of an example of processed data for Sod shock tube problem.

R-adaptive DeepONet 55

-5 0 5

2

4

6

8

(a) Prediction of vanilla DON

-5 0 5

2

4

6

8

(b) Prediction of Shift DON

-5 0 5
2

4

6

8

(c) Prediction of R-adaptive DON

-5 0 5
0

0.5

1

1.5

(d) Error of vanilla DON

-5 0 5
0

0.5

1

1.5

2

(e) Error of Shift DON

-5 0 5
0

1

2

3

(f) Error of R-adaptive DON

Figure 7: Illustration of an example of outputs for Sod shock tube problem.

6. Conclusion and discussion

In this paper, we have proposed a DeepONet learning framework based on the

R-adaptive method to address the limitations of vanilla DeepONet representations. In-

spired by the introduction of adaptive coordinates in R-adaptive methods, our frame-

work tackles the challenge of representing problems with local singularities by sep-

arately learning the adaptive coordinate transform function and the corresponding

solution over the computation domain. Additionally, we have derived two solution-

dependent weighting strategies in the training process to reduce the final error.

We have established an upper bound on the reconstruction error of DeepONet using

error estimation from the piecewise linear interpolation and theoretically demonstrated

that our R-adaptive DeepONet framework can reduce this upper bound, indicating its

potential for problems with local singularities or discontinuities.

In numerical experiments, we selected several typical partial differential equations

with local singularities and used the R-adaptive DeepONet to solve them. We com-

pared its results with those of vanilla DeepONet and Shift-DeepONet. It is shown that

R-adaptive DeepONet generally outperforms vanilla DeepONet with smaller approxi-

mation errors.

Furthermore, we observed that the Shift-DON method performs well in most cases

due to its straightforward and simple structure. However, due to its inherent reliance

on using continuous functions to approximate discontinuous solutions, it inevitably

exhibits Gibbs phenomena near points of discontinuity. Additionally, to achieve suf-

ficiently accurate solutions, Shift-DON typically requires a large amount of training

56 Y. Zhu, J. Chen and W. Deng

data to capture features such as the locations of discontinuities. Therefore, when the

training data is limited, Shift-DON may struggle to achieve the desired accuracy.

On the other hand, R-adaptive DON handles the discontinuity of PDE solutions by

introducing adaptive coordinate transformations, achieving a composite discontinuous

representation through the locally constant nature of the adaptive coordinates near

discontinuities. Both the adaptive solution and the adaptive coordinates are relatively

smooth functions, enabling effective training with a smaller amount of data. As a re-

sult, R-adaptive DON has an advantage over Shift-DON in scenarios where adaptive

sampling is feasible, as it can achieve effective training with fewer data points. We

have also observed that in cases where the solution exhibits large gradients rather than

discontinuities, R-adaptive DON outperforms Shift-DON. We will conduct further re-

search on this point in the future.

Acknowledgments

The authors wish to thank the referees for their constructive suggestions and com-

ments that helped us to improve the presentation of this work.

This work was partially supported by the NSF of China (Grant 12171237), by the

Ministry of Science and Technology of China (Grant 2020YFA0713803), and by the

NSFC Major Research Plan (Grants 92270001, 92370205).

Appendix A. A brief introduction to R-adaptive method and
equidistribution

In this appendix, we provide a brief introduction to the R-adaptive method and its

associated equidistribution principle, see [4,19] for details.

Suppose that we have a PDE with solution u(x, t), which is posed in a physical

domain ΩP ⊂ R
d with independent spatial variable x ∈ R

d for each time t. Conceptu-

ally, an R-adaptive method generates a moving mesh, continuously mapping a suitable

computational space ΩC into ΩP . To achieve this, we assume that a computational co-

ordinate ξ ∈ R
d is continuously mapped to the physical coordinate so that x = x(ξ, t).

The basis of the R-adaptive methods is that a fixed set of mesh grids (with fixed con-

nectivity) in ΩC is moved by this map to a moving set of grids in ΩP where the solution

is developing an interesting structure. As a result, a fixed set of basis functions (corre-

sponding to the fixed mesh grids) in ΩC is mapped to the adaptive basis functions in

ΩP for each t. We write the function in computational coordinate ξ corresponding to

u(x, t) as ũ(ξ, t) = u(x(ξ, t), t). The structure of the function set {ũ(ξ, t)}t is much less

complicated than {u(x, t)}t, allowing us to linearly reconstruct {ũ(ξ, t)}t with fewer

basis functions than {u(x, t)}t.

The equidistribution principle plays a fundamental role in the mesh adaptation pro-

cess. This concept, originating from de Boor [11], is a powerful method for identifying

a suitable mapping. To implement it, we introduce a (time-dependent) Stieltjes mea-

R-adaptive DeepONet 57

sure ρ(x, t)dx into the physical domain. The scalar function ρ(x, t) > 0, known as the

mesh density specification function (or monitor function), is designed to be large in

regions of ΩP where the mesh grids need to be clustered. This function is often defined

indirectly via the solution, such that ρ(x, t) = ρ(x, u(x, t),∇u(x, t), . . . , t). We do not

consider the specific choice of the function ρ here. More detailed discussions can be

found in [19].

Now introduce an arbitrary non-empty set K ⊂ ΩC in the computational domain,

with a corresponding image set x(K, t) ⊂ ΩP . The map x(·, t) equidistributes the

respective density function ρ if the Stieltjes measure of K and x(K, t) normalized over

the measure of their respective domains are the same. This implies that

∫

K dξ
∫

ΩC
dξ

=

∫

x(K,t) ρ(x, t)dx
∫

ΩP
ρ(x, t)dx

.

It follows from a change of variables that

∫

K dξ
∫

ΩC
dξ

=

∫

K ρ(x(ξ, t), t)|J(ξ, t)|dξ
∫

ΩP
ρ(x, t)dx

,

where

J(ξ, t) = det

(

∂x(ξ, t)

∂ξ

)

.

As the set K is arbitrary, the map x(ξ, t) must obey the identity

ρ
(

x(ξ, t), t
)

|J(ξ, t)| =

∫

ΩP
ρ(x, t)dx
∫

ΩC
dξ

=: σ(t). (A.1)

We shall refer to (A.1) as the equidistribution equation, and it must always be satisfied

by the map x(ξ, t). By solving the mesh equation (A.1) and the original problem simul-

taneously, we can obtain the adaptive mesh and the corresponding adaptive solution.

Appendix B. Proof of Theorem 4.4

Recall that with initial data ūζ = ū0(· − ζ), the solution at t = T can be written as

G(ūζ)(x) = ū(x− aT − ζ) = 1[−π/2,π/2](x− aT − ζ).

Given δ > 0, let

Gδ(ūζ)(x) =
1

δ
σ

(

x+
π

2
+

δ

2
− aT − ζ

)

−
1

δ
σ

(

x+
π

2
−

δ

2
− aT − ζ

)

−
1

δ
σ

(

x−
π

2
+

δ

2
− aT − ζ

)

+
1

δ
σ

(

x−
π

2
−

δ

2
− aT − ζ

)

,

58 Y. Zhu, J. Chen and W. Deng

where σ is the rectified linear unit (ReLU). We have that Gδ → G as δ → 0, or

‖Gδ(ū)− G(ū)‖22 = 4

∫ δ/2

0

(x

δ

)2
dx =

δ

6
, ∀ū ∼ µ. (B.1)

Since δ is arbitrary, we can try to approximate Gδ instead of G. We divide the proof into

the following four steps:

Step 1: In the first step, we divide the object operator Gδ into two parts. For each

ū ∼ µ, we introduce a coordinate transform

x = x(ξ) : [−π, π] → [−π, π]

to its image function Gδ(ū), referred to as u for convenience, satisfying the equidistri-

bution relation (ρxξ)ξ = 0, for the mesh density function

ρ(x) =
√

1 + (π2 − 2πδ)u2x,

and the boundary conditions x(−π) = −π, x(π) = π. So we can get the object function

in the transformed variable ũ(ξ) = u(x(ξ)). For example, when ζ = −aT , i.e.

u(x) =
1

δ
σ

(

x+
π

2
+

δ

2

)

−
1

δ
σ

(

x+
π

2
−

δ

2

)

−
1

δ
σ

(

x−
π

2
+

δ

2

)

+
1

δ
σ

(

x−
π

2
−

δ

2

)

,

we have that

x(ξ) = −π +

(

2−
2δ

π

)

(ξ + π) +

(

4δ

π
− 2

)

σ

(

ξ +
3π

4

)

+

(

2−
4δ

π

)

σ
(

ξ +
π

4

)

+

(

4δ

π
− 2

)

σ
(

ξ −
π

4

)

+

(

2−
4δ

π

)

σ

(

ξ −
3π

4

)

,

ũ(ξ) =
2

π
σ

(

ξ +
3π

4

)

−
2

π
σ
(

ξ +
π

4

)

−
2

π
σ
(

ξ −
π

4

)

+
2

π
σ

(

ξ −
3π

4

)

.

Note that for each ū, there is a unique ũ(ξ) and a strictly increasing x(ξ) corresponding

to it. Let us call these two mappings G̃ and T , respectively, as G̃ : ū 7→ ũ(ξ),T : ū 7→
x(ξ). So the objective operator Gδ is divided into two parts, Gδ(ū) = G̃(ū) ◦ (T (ū))−1.

Step 2: Let {ξi = −π + i2π/n}ni=0 be the uniform grid nodes on [−π, π], and {φi}
be the corresponding piecewise-linear basis functions. For a given ũ(ξ), define its finite

element interpolation ũI :=
∑n

i=0 ũ(ξi)φi. Note that ũ itself is piece-linear, with four

corner points that are π/2 apart. So ũI is equal to ũ in the intervals without corner

points. Suppose that a corner point is ξj + η ∈ [ξj , ξj+1], without loss of generality, we

assume that the slope on its left is 0 and right is 2/π. The L2 error on [ξj , ξj+1] can be

R-adaptive DeepONet 59

estimated as

‖ũ− ũI‖
2
L2
[ξj ,ξj+1]

=

∫ η

0

∣

∣

∣

∣

n

π2

(

2π

n
− η

)

ξ̃

∣

∣

∣

∣

2

dξ̃ +

∫ 2π/n

η

∣

∣

∣

∣

n

π2

(

2π

n
− η

)

ξ̃ −
2

π
(ξ̃ − η)

∣

∣

∣

∣

2

dξ̃

=
1

3

n2

π4

(

2π

n
− η

)2

η3 +
1

3

n2

π4

(

2π

n
− η

)3

η2

=
2

3π3
n

(

2π

n
− η

)2

η2 ≤
2π

3
n−3.

So we have

‖ũ− ũI‖L2[−π,π] ≤ Cn−3/2,

where C =
√

8π/3 since there are only four corner points.

Since piecewise linear functions can be represented by ReLU neural networks, there

is a neural network τ : R → R
n+1, mapping ξ to (φ0(ξ), . . . , φn(ξ)) precisely. And by

the universal approximation property of the neural networks, given arbitrary ε > 0,

there exists a neural network β : L1(T) ∪ L∞(T) → R
n+1 such that

sup
ū∼µ

‖β(ū)− (ũ(ξ0), . . . , ũ(ξn))‖l∞ < ε.

Then,

‖G̃(ū)− β(ū) · τ(·)‖L2[−π,π]

≤ ‖ũ− ũI‖2 + ‖ũI − β(ū) · τ(·)‖2

. n−3/2 +
ε

n
. n−3/2.

Let G̃θG be a DeepONet with trunk net τ and branch net β, then we have

‖G̃(ū)− G̃θG(ū)‖L2[−π,π] . n−3/2. (B.2)

Step 3: For x(ξ), define its finite element interpolation

xI(ξ) :=

n
∑

i=0

x(ξi)φi(ξ).

Since xI(ξ) is strictly increasing, we denote its inverse as ξI(x). ξI(x) is linear in each

interval [xi, xi+1], where xi = x(ξi), and ξI(xi) = ξ(xi) = ξi for each i, where ξ(x) is

the inverse of x(ξ). So ξI(x) is equal to ξ(x) in those [xi, xi+1] without corner points.

Suppose a corner point of x(ξ) is ξj + η ∈ [ξj, ξj+1], without loss of generality, we

assume that the slope on its left is 2− 2δ/π and right is 2δ/π.

For simplicity, let k1 = 2− 2δ/π, k2 = 2δ/π. We can calculate that the corner point

is (ξj + η, xj + k1η), and

xj+1 = xj + k1η + k2

(

2π

p
− η

)

.

60 Y. Zhu, J. Chen and W. Deng

So we have

x(ξ) =

{

k1(ξ − ξj) + xj, ξ ∈ [ξj , ξj + η],

k2(ξ − ξj − η) + xj + k1η, ξ ∈ [ξj + η, ξj+1],

xI(ξ) = k3(ξ − ξj) + xj, ξ ∈ [ξj , ξj+1],

where

k3 =
n

2π

(

k1η + k2

(

2π

n
− η

))

.

Correspondingly,

ξ(x) =











1

k1
(x− xj) + ξj , x ∈ [xj, xj + k1η],

1

k2
(x− xj − k1η) + ξj + η, x ∈ [xj + k1η, xj+1],

ξI(x) =
1

k3
(x− xj) + ξj , x ∈ [xj , xj+1].

Then the L2 error on [xj , xj+1] with respect to x can be estimated as

‖ξ(x)− ξI(x)‖
2
L2
[xj ,xj+1]

=

∫ xj+1

xj

|ξ(x)− ξI(x)|
2dx

=

∫ xj+k1η

xj

∣

∣

∣

∣

(

1

k1
−

1

k3

)

(x− xj)

∣

∣

∣

∣

2

dx

+

∫ xj+1

xj+k1η

∣

∣

∣

∣

(

1

k2
−

1

k3

)

(x− xj − k1η)

∣

∣

∣

∣

2

dx

=

∫ k1η

0

∣

∣

∣

∣

(

1

k1
−

1

k3

)

x̃

∣

∣

∣

∣

2

dx̃+

∫ k2(2π/n−η)

0

∣

∣

∣

∣

(

1

k2
−

1

k3

)

x̃

∣

∣

∣

∣

2

dx̃

=
1

3

(

(

1

k1
−

1

k3

)2

(k1η)
3 +

(

1

k2
−

1

k3

)2(

k2

(

2
2π

n
− η

))3
)

=
1

3

(k1 − k2)
2η2(2π/n− η)2

k1η + k2(2π/n− η)

≤
1

3

(k1 − k2)
2

k1
η

(

2π

n
− η

)2

≤
1

3

(k1 − k2)
2

k1

4

27

(

2π

n

)3

.

Since (k1 − k2)
2/k1 → 2π as δ → 0, we have the result

‖ξ(x)− ξI(x)‖L2
[xj ,xj+1]

. n−3/2.

R-adaptive DeepONet 61

Similar to Step 2, we can build a DeepONet TθT such that

∥

∥(T (ū))−1 − (TθT (ū))
−1
∥

∥

L2
[−π,π]

. n−3/2. (B.3)

Step 4: It is obvious that

∥

∥G(ū)− G̃θG(ū) ◦ (TθT (ū))
−1
∥

∥

L2

≤ ‖G(ū)− Gδ(ū)‖L2 +
∥

∥Gδ(ū)− G̃θG(ū) ◦ (TθT (ū))
−1
∥

∥

L2

≤ ‖G(ū)− Gδ(ū)‖L2 +
∥

∥G̃(ū) ◦ (T (ū))−1 − G̃(ū) ◦ (TθT (ū))
−1
∥

∥

L2

+
∥

∥G̃(ū) ◦ (TθT (ū))
−1 − G̃θG(ū) ◦ (TθT (ū))

−1
∥

∥

L2

=: I1 + I2 + I3.

From (B.1), it follows that I1 = δ/6. For I2, from (B.3), it follows that

I2 ≤ Lip
(

G̃(ū)(ξ)
)∥

∥(T (ū))−1(x)− (TθT (ū))
−1(x)

∥

∥

L2 .
2

π
n−3/2.

Further, for I3, from (B.2), it follows that

I3 =

∫

T

∣

∣G̃(ū) ◦ (TθT (ū))
−1(x)− G̃θG(ū) ◦ (TθT (ū))

−1(x)
∣

∣

2
dx

=

∫

T

∣

∣G̃(ū)(ξ) − G̃θG(ū)(ξ)
∣

∣

2
(TθT (ū))ξdξ

≤

(

2−
2

π
δ

)

∥

∥G̃(ū)− G̃θG(ū)
∥

∥

2

L2 .

(

2−
2

π
δ

)

n−3.

Hence,

∥

∥G(ū)− G̃θG(ū) ◦ (TθT (ū))
−1
∥

∥

L2 .
δ

6
+

√

(

2−
2

π
δ

)

n−3/2 +
2

π
n−3/2.

Since δ is arbitrary, we have the final result

∥

∥G(ū)− G̃θG(ū) ◦ (TθT (ū))
−1
∥

∥

L2 . n−3/2, ∀ū ∼ µ.

Appendix C. Proof of Theorem 4.6

It is well known that the inviscid Burgers’ equation can be solved using the method

of characteristics. For general initial data ū(x) = − sin(x − ζ), the solution u(x, t) is

given by

u(x, t) =

{

− sin
(

Ψ−1
T (x− ζ + 2π)

)

, if x < ζ,

− sin
(

Ψ−1
T (x− ζ)

)

, if x ≥ ζ,

62 Y. Zhu, J. Chen and W. Deng

where

ΨT (x0) = x0 − T sin(x0 − ζ)

is the characteristic mapping associated with the initial data.

Similar to the proof of Theorem 4.4, we first approximate the solution of the equa-

tion using a simple continuous function. Here, we take the case ū(x) = − sin(x − ζ)
as an example. For the more general case of ū(x) = − sin(x − ζ), we can leverage

the translation invariance property of the Burgers’ equation to obtain similar results by

shifting the solution accordingly.

At time t = T > 1, characteristic curves intersect at x = π, leading to the formation

of a shock and causing the solution to become discontinuous at that point. To address

this discontinuity, we employ a continuous function to approximate the solution.

Given δ > 0, we define a continuous function uδ(x) on the interval [0, 2π] satisfying

the following conditions:

1. For x ∈ [0, π − δ] ∪ [π + δ, 2π], the function uδ(x) coincides with the original

solution u(x, T)

uδ(x) = u(x, T), x ∈ [0, π − δ] ∪ [π + δ, 2π].

2. In the interval [π− δ, π+ δ], the function uδ(x) is defined as a linear function that

smoothly connects the values at x = π − δ and x = π + δ, ensuring continuity of

the approximation.

As δ → 0, the function uδ(x) converges to the discontinuous solution u(x, T).
Specifically, for any ǫ1 > 0, there exists δ > 0 such that

‖uδ − u(·, T)‖22 < ǫ1.

This ensures that the continuous approximation uδ(x) can approach the original solu-

tion u(x, T) in the L2-norm as closely as desired, depending on the choice of δ.

Thus, we provide an approximation Gδ of the Burgers’ equation solution operator

GBurg, where Gδ(ū) = uδ, and

‖Gδ(ū)− GBurg(ū)‖
2
2 < ǫ1, ∀ū ∼ µ.

Then, similar to the Step 1 in Appendix B, we now divide the operator Gδ into two parts.

Consider again the initial condition ū(x) = − sin(x − π). We introduce a coordinate

transform x = x(ξ) : [0, 2π] → [0, 2π], satisfying the equidistribution relation for the

mesh density function

ρ(x) =
√

1 + u2x

with the boundary conditions x(0) = 0 and x(2π) = 2π. To handle the discontinuity

at x = π, we truncate the mesh density function ρ(x) so that it remains constant for

x ∈ [0, π−δ]∪ [π+δ, 2π]. This truncation is reasonable because the gradient of uδ in the

interval [π − δ, π + δ] is large, significantly different from that in [0, π − δ] ∪ [π + δ, 2π].

R-adaptive DeepONet 63

After truncation, we set the value of ρ(x) in [0, π − δ]∪ [π+ δ, 2π] such that its ratio

to the value in [π − δ, π + δ] is δ : (π − δ). Then we have

x(ξ) =































4
π − δ

π
ξ, ξ ∈

[

0,
π

4

]

,

π − δ + 4
δ

π

(

ξ −
π

4

)

, ξ ∈

[

π

4
,
3π

4

]

,

π + δ + 4
π − δ

π

(

ξ −
3π

4

)

, ξ ∈

[

3π

4
, 2π

]

,

ũ(ξ) =































− sin

(

Ψ−1
T

(

4
π − δ

π
ξ + π

))

, ξ ∈
[

0,
π

4

]

,

linear, ξ ∈

[

π

4
,
3π

4

]

,

− sin

(

Ψ−1
T

(

δ + 4
π − δ

π

(

ξ −
3π

4

)))

, ξ ∈

[

3π

4
, 2π

]

.

By this approach, we decompose uδ(x) into two parts, and the gradients of both x(ξ)
and ũ(ξ) can be well controlled. The remainder of the proof follows similar steps as the

linear transport equation case and is omitted here.

References

[1] W. BANGERTH AND R. RANNACHER, Adaptive finite element methods for differential equa-

tions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, 2003.
[2] K. BHATTACHARYA, B. HOSSEINI, N. B. KOVACHKI, AND A. M. STUART, Model reduction

and neural networks for parametric PDEs, SMAI J. Comput. Math. 7 (2021), 121–157.
[3] J. BLECHSCHMIDT AND O. G. ERNST, Three ways to solve partial differential equations with

neural network — A review, GAMM-Mitt. 44 (2021), e202100006.

[4] C. J. BUDD AND J. F. WILLIAMS, Moving mesh generation using the parabolic Monge-

Ampère equation, SIAM J. Sci. Comput. 31 (2009), 3438–3465.

[5] S. CAI, Z. MAO, Z. WANG, M. YIN, AND G. E. KARNIADAKIS, Physics-informed neural

networks (PINNs) for fluid mechanics: A review, Acta Mech. Sin. 37 (2021), 1727–1738.
[6] S. CAI, Z. WANG, L. LU, T. A. ZAKI, AND G. E. KARNIADAKIS, DeepM & Mnet: Inferring the

electroconvection multiphysics fields based on operator approximation by neural networks,
J. Comput. Phys. 436 (2021), 110296.

[7] H. D. CENICEROS AND T. Y. HOU, An efficient dynamically adaptive mesh for potentially

singular solutions, J. Comput. Phys. 172 (2001), 609–639.
[8] T. CHEN AND H. CHEN, Universal approximation to nonlinear operators by neural networks

with arbitrary activation functions and its application to dynamical systems, IEEE Trans.

Neural Networks Learn. Syst. 6 (1995), 911–917.
[9] P. CLARK DI LEONI, L. LU, C. MENEVEAU, G. E. KARNIADAKIS, AND T. A. ZAKI, Neural

operator prediction of linear instability waves in high-speed boundary layers, J. Comput.
Phys. 474 (2023), 111793.

[10] C. M. DAFERMOS AND C. M. DAFERMOS, Hyperbolic Conservation Laws in Continuum

Physics, Vol. 3, Springer, 2005.

64 Y. Zhu, J. Chen and W. Deng

[11] C. DE BOOR, Good approximation by splines with variable knots. II, in: Conference on the
Numerical Solution of Differential Equations, Lecture Notes in Mathematics, Vol. 363,

Springer, (1974), 12–20.

[12] V. DOLEJŠ́I AND M. FEISTAUER, Discontinuous Galerkin Method. Analysis and Applications

to Compressible Flow, Springer Series in Computational Mathematics, Vol. 48, Springer,

2015.
[13] W. E, Machine learning and computational mathematics, Commun. Comput. Phys. 28

(2020), 1639–1670.

[14] W. E AND B. YU, The deep Ritz method: A deep learning-based numerical algorithm for

solving variational problems, Commun. Math. Stat. 6 (2018), 1–12.

[15] P. S. HADORN, Shift-Deeponet: Extending Deep Operator Networks for Discontinuous Out-

put Functions, ETH Zurich, Seminar for Applied Mathematics, 2022.
[16] J. HE, L. LI, J. XU, AND C. ZHENG, ReLU deep neural networks and linear finite elements,

J. Comput. Math. 38 (2020), 502–527.
[17] J. S. HESTHAVEN AND S. UBBIALI, Non-intrusive reduced order modeling of nonlinear prob-

lems using neural networks, J. Comput. Phys. 363 (2018), 55–78.

[18] B. HUANG AND J. WANG, Applications of physics-informed neural networks in power systems

— A review, IEEE Trans. Power Syst. 38 (2023), 572–588.

[19] W. HUANG AND R. D. RUSSELL, Adaptive Moving Mesh Methods, Applied Mathematical

Sciences, Vol. 174, Springer, 2011.
[20] Y. KHOO, J. LU, AND L. YING, Solving parametric PDE problems with artificial neural net-

works, Eur. J. Appl. Math. 32 (2021), 421–435.
[21] S. KOLLMANNSBERGER ET AL., Deep Learning in Computational Mechanics, Springer, 2021.

[22] S. LANTHALER, S. MISHRA, AND G. E. KARNIADAKIS, Error estimates for DeepONets: A deep

learning framework in infinite dimensions, Trans. Math. Appl. 6 (2022), doi:10.1093/
imatrm/tnac001.

[23] S. LANTHALER, R. MOLINARO, P. HADORN, AND S. MISHRA, Nonlinear Reconstruction for

Operator Learning of PDEs with Discontinuities, Tech. Rep. 2022-42, Seminar for Applied
Mathematics, ETH Zürich, 2022.

[24] S. LANTHALER AND A. M. STUART, The curse of dimensionality in operator learning, arXiv:
2306.15924, 2023.

[25] J. Y. LEE, S. W. CHO, AND H. J. HWANG, Hyperdeeponet: Learning operator with com-

plex target function space using the limited resources via hypernetwork, arXiv:2312.15949,
2023.

[26] Z. LI ET AL., Fourier Neural Operator for Parametric Partial Differential Equations, in:

International Conference on Learning Representations, 2021.
[27] C. LIN, M. MAXEY, Z. LI, AND G. E. KARNIADAKIS, A seamless multiscale operator neural

network for inferring bubble dynamics, J. Fluid Mech. 929 (2021), A18.
[28] L. LU, P. JIN, G. PANG, Z. ZHANG, AND G. E. KARNIADAKIS, Learning nonlinear operators

via deeponet based on the universal approximation theorem of operators, Nat. Mach. Intell.

3 (2021), 218–229.
[29] K. O. LYE, S. MISHRA, AND D. RAY, Deep learning observables in computational fluid

dynamics, J. Comput. Phys. 410 (2020), 109339.

[30] Z. MAO, A. D. JAGTAP, AND G. E. KARNIADAKIS, Physics-informed neural networks for

high-speed flows, Comput. Methods Appl. Mech. Engrg. 360 (2020), 112789.

[31] A. PINKUS, N-Widths in Approximation Theory, Springer Science & Business Media, 1985.
[32] M. RAISSI, P. PERDIKARIS, AND G. E. KARNIADAKIS, Physics-informed neural networks:

A deep learning framework for solving forward and inverse problems involving nonlinear

R-adaptive DeepONet 65

partial differential equations, J. Comput. Phys. 378 (2019), 686–707.
[33] J. SEIDMAN, G. KISSAS, P. PERDIKARIS, AND G. J. PAPPAS, Nomad: Nonlinear manifold

decoders for operator learning, in: Advances in Neural Information Processing Systems,

S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds), Vol. 35, Curran
Associates Inc., (2022), 5601–5613.

[34] J. SIRIGNANO AND K. SPILIOPOULOS, DGM: A deep learning algorithm for solving partial

differential equations, J. Comput. Phys. 375 (2018), 1339–1364.

[35] T. TANG, R. LI, AND Z. ZHANG, Moving Mesh Methods for Partial Differential Equations,

Science Press, 2023.
[36] E. F. TORO, Riemann solvers and numerical methods for fluid dynamics: A practical intro-

duction, Springer Science & Business Media, 2013.

[37] S. VENTURI AND T. CASEY, SVD perspectives for augmenting DeepONet flexibility and inter-
pretability, Comput. Methods Appl. Mech. Engrg. 403 (2023), 115718.

[38] D. B. WEST, Introduction to Graph Theory, Prentice Hall Inc., 1996.
[39] M. YIN, E. ZHANG, Y. YU, AND G. E. KARNIADAKIS, Interfacing finite elements with deep

neural operators for fast multiscale modeling of mechanics problems, Comput. Methods

Appl. Mech. Engrg. 402 (2022), 115027.

