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Abstract. We construct first- and second-order time semi-discretization numerical
schemes for the Cahn-Hilliard-Navier-Stokes model. This discretization scheme is

based on the energy form of the scalar auxiliary variable approach for the coupling
terms of model and pressure correction in the Navier-Stokes equations, which are

fully decoupled. Then, we apply the fully explicit forms and the two scalar auxiliary

variables to obtain stable unconditional energy over time. At the same time, we
present the error analysis for the first-order scheme and the convergence rate for all

relevant variables in different norms. Finally, numerical examples are presented to

validate the theoretical analysis.
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1. Introduction

In this article, we consider the Cahn-Hilliard-Navier-Stokes (CHNS) system as fol-

lows:
∂φ

∂t
+ (u · ∇)φ−M∆µ = 0 in Ω× (0, T ],

µ+ λ∆φ− λG′(φ) = 0 in Ω× (0, T ],

∂u

∂t
+ u · ∇u− ν∆u+∇p− µ∇φ = 0 in Ω× (0, T ],

∇ · u = 0 in Ω× (0, T ],

(1.1)
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where

G(φ) =
1

4ǫ2
(φ2 − 1)2

is a nonlinear free energy density, where ǫ denotes the interface width and M,λ, ν > 0,
describes the mobility, mixing coefficient, and fluid viscosity, respectively, then there is

usually an evolution equation for the phase-field variable φ. We consider the following

no-flux or no-flow boundary and initial conditions of (1.1):

∂φ

∂n
=

∂µ

∂n
= 0, u = 0 on ∂Ω× (0, T ],

φ(x, 0) = φ0, u(x, 0) = u
0 in Ω,

(1.2)

where Ω is a bounded domain in R
2 with boundary ∂Ω. The unknowns are the phase

function φ and the chemical potential µ, the velocity u, the pressure p, and n denotes

the unit outward normal vector on ∂Ω. We can obtain the energy dissipation law in

above system (1.1) as follows:

dE(φ,u)

dt
= −M‖∇µ‖2 − ν‖∇u‖2, (1.3)

where

E(φ,u) =

∫

Ω

{

1

2
|u|2 + λ

2
|∇φ|2 + λG(φ)

}

dx

is the total energy, and ‖ · ‖ is defined as L2 norm.

For the CHNS system, the equations of the phase-field model are derived from the

energy function, so the numerical discretization scheme must satisfy the energy sta-

bility. Moreover, the system (1.1) is a coupling of the Cahn-Hilliard [2] and Navier-

Stokes equations [15], and in order to reduce the computational effort, it is desirable

for the discretization scheme to achieve decoupling of these two equations. There-

fore, in the past decades, many numerical schemes have emerged for CHNS systems

to satisfy the need for energy stabilization or decoupling. The numerical methods

[4–7,9,10,12,13,16–18,23,25,29,32,34] are mainly the linear stabilization method,

the convex splitting method, the invariant energy quadratization method (IEQ) and its

variant version, and the scalar auxiliary variable (SAV) method. Feng [10] proposed

and analyzed a fully discrete mixed finite element method for the CHNS phase-field

model, where the time discretization used an implicit Euler scheme. Kay et al. [18]

presented a finite element discretization of the variable density CHNS system. Subse-

quently, they constructed semi-discrete and practical fully-discrete finite element ap-

proximation schemes for the CHNS system and analyzed the convergence of the fully-

discrete approximation [17]. He et al. [14] used the finite element spatial approxi-

mation with the time discretization by operator-splitting and a least-squares/conjugate

gradient method for the Cahn-Hilliard equation. Shen and Yang [29] constructed sev-

eral effective time discretization schemes for the coupled nonlinear Cahn-Hilliard two-

phase incompressible flows with the matched density case and the variable density case

and established the dissipation energy law. Bao et al. [1] submitted the semi-implicit


