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Abstract. This work focuses on the efficient numerical simulation of the Cahn-
Hilliard phase-field model of diblock copolymers on evolving surfaces. The model in-

tegrates Cahn-Hilliard dynamic of diblock copolymers with partial differential equa-

tion on evolving surfaces, which has the property of geometric complexity, non-
linearity and mass conservation. In the numerical simulation, the space-time dis-

cretization of the proposed model is realized by the evolving surface finite element
method. The stabilized semi-implicit approach is included in the framework of the

evolving surface finite element method to produce a linear, stable, conserved and

high-accurate scheme for long time numerical simulations. The stability analysis of
the designed numerical method is established. Through several numerical experi-

ments, the convergence and stability of the numerical method are investigated. In

addition, spinodal decomposition is performed to research the mass evolution and
dynamics of the Cahn-Hilliard model of diblock copolymers on different evolving

surfaces.
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1. Introduction

A diblock copolymer is a copolymer formed by the alternating arrangement of two

different monomers repeatedly. It is widely used in nanotechnology [1,2,7], biomathe-

matics [13,25], film materials [30,34], and other fields due to its many unique proper-

ties. The Cahn-Hilliard (CH) phase-field model of diblock copolymers is a mathematical

model to describe the related evolution behaviors [3, 4, 23, 35]. It is based on the CH
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equation with considering the concentration profiles of two different monomers on the

copolymer chain. The idea of modeling is to introduce an order parameter to repre-

sent the difference between the concentration of the two categories of monomers. The

evolution of the system can be viewed as the minimization of the total free energy

functional in CH dynamics. The energy of the system is given by the nonlocal Ohta-

Kawasaki functional which containing a nonlocal term that represents the first-order

effects of the connectedness of the monomer chains [4, 6]. In [4, 24, 37], the authors

have investigated the CH phase-field model of diblock copolymers, including the es-

tablishment of mathematical models, the design of reliable and effective numerical

methods, and the numerical simulation in two- and three-dimensions.

The modeling of diblock copolymers on evolving domains is more general than that

on two- and three-dimensional stationary domains. Therefore, it is interesting to in-

vestigate the dynamic behavior of this model on evolving surfaces, which corresponds

to simulation studies on non flat and evolving substrates. This study is devoted to

present the related mathematical modeling and numerical simulation approach. To ex-

plore the performance of the diblock copolymers on evolving surfaces, we construct the

model by combining the CH dynamics of diblock copolymers and the partial differen-

tial equations on evolving surfaces. On the evolving surface, the developed model has

the physical property of mass conservation. However, the velocity can be regarded as

a force that is external, so the energy is not strictly dissipated. The property of energy

is not studied in this paper, and more related content can be found in [19,20].

To solve the CH model of diblock copolymers on the evolving surface, the related

space-time discretization approaches should be reviewed. The evolving surface finite

element method (ESFEM) [9–11, 27], stands as a widely-used space-time discretiza-

tion technique that relies on a triangular mesh and variational formulation. Meshless

methods are a class of methods that avoid mesh generation and have high accuracy.

The common meshless approaches include the element-free Galerkin method [26,31],

the radial basis function finite differences (RBF-FD) method [22,29], the moving least

squares method [14,15]. Although they avoid mesh generation, the numerical stability

depends strongly on the distribution of surface nodes in the local stencil, and the re-

lated theoretical analyses are hard to be given. Taking into account both the operability

of programming and the complexity of theoretical investigation, we select ESFEM as

the fundamental method for space-time discretization in this study.

Another difficulty in designing the numerical method is avoiding the numerical

instability caused by the small interface parameter for long time simulation. There

are some mature and efficient numerical methods for settling models in 2D and 3D.

Invariant energy quadratization (IEQ) [4,24] and scalar auxiliary variable (SAV) meth-

ods [23] are widely used in the design of numerical algorithms. The fundamental idea

behind these two approaches is to create a new equation that is of equal value to the

original equation by bringing in suitable auxiliary variables and formulating the energy

functional into a quadratic form. For the IEQ and SAV schemes, the numerical solu-

tion can only guarantee that the modified energy is monotonically nonincreasing, but

it cannot obtain stability with respect to the original energy.



Stabilized FEM for the Cahn-Hilliard Phase-Field Model 105

The fully implicit or fully explicit discrete methods [21,28] have high requirements

on the step size and have no marked superiority in the stable and long-term numerical

simulation. The traditional semi-implicit (SI) scheme [5,26] combines the strengths of

full implicit and full explicit but still has a little limit on step size. The stabilized semi-

implicit (SSI) method [12, 18, 33, 36] is obtained by adding stabilized terms to the SI

method, which can effectively settle the instability caused by the rigidity of the model.

As previously stated, this paper does not consider the related properties of energy, and

this method can well balance the rigidity of the model, which is suitable for dealing

with this problem. Therefore, utilizing the ESFEM framework in conjunction with the

SSI scheme, we devise an efficient numerical method for evolving surfaces.

The rest of this paper is organized as follows. In Section 2, the CH model of diblock

copolymers on evolving surfaces is constructed, and the mass conservation property

is proved. In Section 3, the corresponding numerical algorithm is designed for the

model. In Section 4, the stability of the numerical method is analyzed. Section 5

presents numerical simulations that aim to demonstrate the validity of the model and

the efficacy of the numerical method. Furthermore, the dynamics of the proposed

model are investigated by experiments of spinodal decomposition on different evolving

surfaces.

2. The CH model of diblock copolymers on evolving surfaces

In this part, the CH model of diblock copolymers on evolving surfaces is introduced.

For ∀t ∈ [0, T ], T > 0, let Γ(t) be a smooth closed evolving hypersurface in N (t) ⊂ R
3.

The velocity field v determines the orientation of the evolution of the surface Γ(t), and

Γ0 = Γ(0) is the initial surface. Introduce the level set function η(x, t) ∈ C4 (N (t)),
∇η(x, t) 6= 0, such that Γ(t) has the following zero-level set expression:

Γ(t) =
{
(x, t) = (x, y, z, t) ∈ N (t) | η(x, t) = 0

}

and {
η(x, t) > 0, x ∈ N+(t),

η(x, t) < 0, x ∈ N−(t),

where N+(t) and N−(t) denote that the surface Γ(t) divides N (t) into inner and outer

parts such that N+(t)
⋂

N−(t) = ∅ and N+(t)
⋃

Γ(t)
⋃

N−(t) = N (t) are satisfied.

The unit normal vector at ∀(x, t) ∈ Γ(t) is n(x, t) = ∇η(x, t)/|∇η(x, t)|.
To facilitate the description of the following notation, the space-time region RT is

defined as

RT =
⋃

t∈[0,T ]

Γ(t)× {t}.

Take the function u : RT → R and define the material derivative

∂•u =
∂u

∂t
+ u∇ · v. (2.1)
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For any function u on the surface Γ(t), define its tangential gradient and tangential

divergence as ∇Γ(t)u = ∇u−∇u · nn⊤ and ∇Γ(t)u· = trace(∇Γ(t)u). Laplace-Beltrami

operator of u is defined as ∆Γ(t)u = ∇Γ(t) · ∇Γ(t)u.

In [8], the differentiation of time dependent surface integrals can be achieved by

the use of the transport formulae, which have been demonstrated.

Lemma 2.1. Consider an evolving surface, denoted as Γ(t), which possesses a velocity field

given by v(x, t), for smooth functions u(x, t) and g(x, t), there are

d

dt

∫

Γ(t)
udx =

∫

Γ(t)
∂•u+ u∇Γ(t) · v dx, (2.2)

d

dt

∫

Γ(t)
ugdx =

∫

Γ(t)
∂•ug + u∂•g + ug∇Γ(t) · v dx. (2.3)

The CH model of diblock copolymers is constructed by the phase field method.

Phase field variable φ ∈ L2(Γ) is introduced to represent the concentration difference

of two monomers. The evolution of the system is governed by a coarse-grained free

energy functional, expressed as follows:

E(φ) =

∫

Γ(t)

(
ǫ

2
|∇φ|2 +

1

ǫ
F (φ)

)
dx

+
αǫ

2

∫

Γ(t)

∫

Γ(t)
G(x− y)(φ(x)− φ̄)(φ(y)− φ̄)dxdy, (2.4)

where F (φ) = (φ2 − 1)2/4 is the bulk Ginzburg-Landau double well potential,

φ̄ =
1

|Γ(t)|

∫

Γ(t)
φdx, G(x− y) = −δ(x− y)

is Green’s function, α is a positive parameter and ǫ is interface width. By using the

Cahn-Hilliard dynamics for φ, the CH model of diblock copolymers on evolving surfaces

is governed by equations





∂•φ+ φ∇Γ(t) · v =M∆Γ(t)ψ,

ψ =
δE(φ)

δφ
,

(2.5)

where M represents mobility. The final model system is governed by the following

equations:





∂•φ+ φ∇Γ(t) · v =M∆Γ(t)

(
ψ + (−∆Γ(t))

−1αǫ(φ− φ̄)
)
, x ∈ Γ(t), t ∈ (0, T ],

ψ = −ǫ∆Γ(t)φ+
f(φ)

ǫ
, x ∈ Γ(t), t ∈ (0, T ],

φ = φ0, x ∈ Γ(t), t = 0,

(2.6)
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where f(φ) = F (φ)
′

= φ3 − φ. The velocity can be perceived as an external force,

thus the energy is not solely dissipated. Hence, the property of energy is not the focus

of this paper. The model (2.6) satisfies the mass conservation property. The following

theorem gives the proof.

Theorem 2.1. The model presented in (2.6) fulfills the mass conservation property, namely,

d

dt

∫

Γ(t)
φdx = 0. (2.7)

Proof. Using Lemma 2.1 and (2.6), we obtain

d

dt

∫

Γ(t)
φϕ dx+

∫

Γ(t)
∇Γ(t)ψ∇Γ(t)ϕ dx

= −αǫ

(∫

Γ(t)
(φ− φ̄)ϕ dx

)
+

∫

Γ(t)
φ∂•ϕ dx. (2.8)

Let ϕ = 1, and Eq. (2.8) can be rewritten as

d

dt

∫

Γ(t)
φ dx = −αǫ

(∫

Γ(t)
φ dx−

1

|Γ(t)|

∫

Γ(t)
φ dx

∫

Γ(t)
dx

)
= 0. (2.9)

The mass conservation property is proved.

3. Numerical method

In this section, the numerical methods for solving the CH model of diblock copoly-

mers is presented. On the basis of ESFEM, we combine the SSI method to construct the

numerical schemes.

3.1. Evolving surface finite element method (ESFEM)

Choosing the test functions η, ξ in H1(Γ(t)), and using Lemma 2.1, the weak form

of (2.6) is denoted by





d

dt

∫

Γ(t)
φη dx+M

∫

Γ(t)
∇Γ(t)ψ∇Γ(t)η dx+Mαǫ

(∫

Γ(t)
(φ− φ̄)η dx

)

=

∫

Γ(t)
φ∂•η dx,

∫

Γ(t)
ψξ dx = ǫ

∫

Γ(t)
∇Γ(t)φ∇Γ(t)ξ dx+

1

ǫ

∫

Γ(t)
fξ dx.

(3.1)

It is difficult to directly divide the mesh, define the basis function, and perform in-

tegration on the original surface Γ. Therefore, the first step of the ESFEM is to perform
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Figure 1: Triangulated mesh discretization of surfaces.

the surface approximation, that is, to use the discrete surface spliced by the quasi-

uniform piecewise triangular mesh to approximately replace Γ as the computational

area. The discretized surface, denoted Γh, is composed of non-overlapping and quasi-

uniform triangles eh,k(t), as shown in Fig. 1. The discrete surface generation technique

used in this paper is a matching algorithm for level set surfaces, which can be referred

to [16] for details.

Denote the set of triangles as {eh,k(t)}
Ne

k=1, then the discrete mesh can be repre-

sented as

Γh(t) =

Ne⋃

k=1

eh,k(t),

whereNe is the number of triangles. The mesh size parameter of the discretized surface

Γh is h, h := maxNe

k=1 hk, where hk is the longest edge of eh,k(t). When t = 0, Γ0
h is

a polyhedral approximation of the initial surface Γ0 and restricts the nodes {X0
j}

Np

j=1 of

Γ0
h to lie on Γ0. We evolve the node {Xj(t)}

Np

j=1 by the surface velocity

dXj

dt
(t) = v

(
Xj(t), t

)
, j = 1, . . . , Np, (3.2)

where Np is the number of nodes. Let N̂ be a positive integer and T be the total time,

the time step ∆t := T/N̂ and tn = n∆t. The finite element space is defined as

Sh(t) =
{
φh(X, t) ∈ C0(Γh(t)) | φh(X, t) is linear polynomial on eh(t),

∀eh,k(t) ∈ {eh,k(t)}
Ne

k=1

}

= Span
{
χj(X, t) | j = 1, 2, . . . , Np

}
⊂ H1

(
Γh(t)

)
. (3.3)

The node basis functions in the space Sh are defined by

χj(Xk, t) =

{
1, j = k,

0, j 6= k,
j, k = 1, 2, . . . , Np. (3.4)
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Let Sn
h = Sh(t

n), Zn
h = Zh(x, t

n), Y n
h = Yh(x, t

n) ∈ Sn
h . We define the following bilinear

forms:

mh(Z
n
h , Y

n
h ) =

∫

Γh(t)
Zn
hY

n
h dx,

ah(Z
n
h , Y

n
h ) =

∫

Γh(t)
∇Γh(t)Z

n
h · ∇Γh(t)Y

n
h dx.

(3.5)

Next, the discrete solution of the finite element can be expressed as

φnh =

Np∑

j=1

φnj χ
n
j ∈ Sn

h , ψn
h =

Np∑

j=1

wn
j χ

n
j ∈ Sn

h , (3.6)

where φnj and ψn
j are nodal values at tn. An arbitrary point x = X(t) ∈ Γh(t), material

velocity vh(x, t) is given by

d

dt
X(t) = vh (x, t) , vh

(
X(t), t

)
:=

Np∑

j=1

d

dt
Xj(t)χj (x, t) . (3.7)

We define the space-discrete material derivative on each element of Γh(t) as

∂•hYh(x, t)|eh(t) =
∂

∂t
Yh(x, t) + vh(x, t) · ∂Yh(x, t). (3.8)

The basis functions satisfy the transport property that [9,10]

∂•hχj(x, t) = 0, j = 1, . . . , N. (3.9)

With this property, there will be no velocity or curvature term in the evolving surface

finite element scheme. In addition, for Y n
h ∈ Sn

h , Y n+1
h ∈ Sn+1

h , we define

∂•hY
n
h =

N∑

j=1

1

∆t

(
Y n+1
j − Y n

j

)
χn
j ∈ Sn

h , (3.10)

which will be used for theoretical analysis.

3.2. Stabilized semi-implicit (SSI) scheme

The purpose of introducing the SSI method is to avoid the numerical instability

caused by the small interface width and nonlinearity. The substance of the SSI method

is to add the corresponding stabilized terms based on the original scheme. This method

can significantly improve the stability, which is beneficial to long time numerical simu-

lations.
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The first-order scheme of the SSI method for (3.1) is shown in




1

∆t

(
mh(φ

n+1
h , ηn+1

h )−mh(φ
n
h, η

n
h)
)
+Mah

(
ψn+1
h , ηn+1

h

)

+Mαǫ
(
mh(φ

n
h, η

n
h)−mh(φ̄

n
h, η

n
h)
)
= mh(φ

n
h, ∂

•
hη

n
h),

mh

(
ψn+1
h , ξn+1

h

)
= ǫah

(
φn+1
h , ξn+1

h

)
+

1

ǫ
mh

(
f (φnh) , ξ

n
h

)

+
β

ǫ

(
mh(φ

n+1
h , ξn+1

h )−mh(φ
n
h, ξ

n
h )
)
,

(3.11)

where β is the coefficient of the stabilized terms. And the second-order scheme of the

SSI method is as follows:




1

2∆t

(
3mh(φ

n+1
h , ηn+1

h )− 4mh(φ
n
h, η

n
h) +mh(φ

n−1
h , ηn−1

h )
)

+Mah
(
ψn+1
h , ηn+1

h

)
+ 2Mαǫ

(
mh(φ

n
h, η

n
h)−mh(φ̄

n
h, η

n
h)
)

−Mαǫ
(
mh(φ

n−1
h , ηn−1

h )−mh(φ̄
n−1
h , ηn−1

h )
)

= 2mh

(
φnh, ∂

•
hη

n
h

)
−mh

(
φn−1
h , ∂•hη

n−1
h

)
,

mh

(
ψn+1
h , ξn+1

h

)
= ǫah

(
φn+1
h , ξn+1

h

)

+
1

ǫ

(
2mh(f(φ

n
h), ξ

n
h)−mh(f(φ

n−1
h ), ξn−1

h )
)

+
β∆t

ǫ

(
mh(φ

n+1
h , ξn+1

h )−mh(φ
n
h, ξ

n
h)
)
.

(3.12)

Theorem 3.1. The first-order (3.11) and second-order (3.12) of the numerical scheme

fulfill the mass conservation property, namely,

mh

(
φih, 1

)
= mh

(
φ0h, 1

)
, i = 1, 2, . . . , n. (3.13)

Proof. Let ηn+1
h = ηnh = ηn−1

h = 1. For the first-order scheme, we get

1

∆t

(
mh(φ

n+1
h , 1)−mh(φ

n
h, 1)

)
+Mαǫ

(
mh(φ

n
h, 1)−mh(φ̄

n
h, 1)

)
= 0, (3.14)

which indicates that mh(φ
n
h, 1) = mh(φ

0
h, 1), that is, the discrete first-order scheme

(3.11) follows from the mass conservation property.

For the second-order scheme, we obtain

3mh

(
φn+1
h , 1

)
− 4mh

(
φnh, 1

)
+mh

(
φn−1
h , 1

)
= 0. (3.15)

During the algorithm implementation, we figure out φ1h using the first-order scheme by

a small time step, then

mh

(
φ1h, 1

)
= mh

(
φ0h, 1

)
. (3.16)

When n = 1, it can be obtained

mh

(
φ2h, 1

)
= mh

(
φ0h, 1

)
. (3.17)
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Then we can deduce that

mh

(
φnh, 1

)
= mh

(
φ0h, 1

)
, n = 1, 2, . . . , N, (3.18)

which indicates that the second-order scheme (3.12) satisfies the mass conservation

property.

For numerical schemes (3.11) and (3.12), we will next write their matrix forms. Let

M(t) =
(
M(t)jk

)
Np×Np

, S(t) =
(
S(t)jk

)
Np×Np

,

I(t) =
(
I(t)j

)
Np×1

, Fi(t) =
(
Fi(t)

j
)
Np×1

(3.19)

be the matrices with the entries

M(t)jk =

∫

Γh(t)
χj(x, t)χk(x, t)dx,

S(t)jk =

∫

Γh(t)
∇Γh(t)χj(x, t) · ∇Γh(t)χk(x, t)dx,

I(t)j =

∫

Γh(t)
χj(x, t)dx,

F(t)j = f(x, t).

(3.20)

Let Un and V n be Np-dimensional column vectors for the solution φnh and ψn
h , then the

matrix forms of (3.11) and (3.12) respectively are



1

∆t
Mn+1 MSn+1

−ǫSn+1 −
β

ǫ
Mn+1 Mn+1



(
Un+1

V n+1

)

=




(
1

∆t
−Mαǫ

)
MnUn +

Mαǫ

|Γn
h|

MnIn

1

ǫ
MnFn −

β

ǫ
MnUn


 , (3.21)

and 


3

2∆t
Mn+1 MSn+1

−ǫSn+1 −
β∆t

ǫ
Mn+1 Mn+1



(
Un+1

V n+1

)

=




A

1

ǫ
(2MnFn −Mn−1Fn−1)−

β∆t

ǫ
MnUn


 , (3.22)

where

A =

(
−2Mαǫ+

2

∆t

)
MnUn +

(
Mαǫ−

1

2∆t

)
Mn−1Un−1

+
2Mαǫ

|Γn
h|

MnIn −
Mαǫ

|Γn−1
h |

Mn−1In−1.
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4. Stability analysis

In this section, we show the stability of the numerical schemes (3.11) and (3.12)

presented in the previous section. To facilitate the stability analysis while considering

the simplicity the proof, we set β = 0 in this study. The proof for β > 0 needs more

analytical skills and is elusive. Before formally gaining the stability conclusions, we

first introduce some lemmas and estimates.

For the fully discretization, we analyze the L2-stability by assuming that the velocity

is uniformly bounded as follows:

∥∥∇Γh(t) · vh(x, t)
∥∥
L∞(Γh(t))

6 c, (4.1)

constant c depends only on the surface velocity and is independent of model parame-

ters.

Lemma 4.1 ([9]). Let θnh ∈ Sn
h , θn+1

h ∈ Sn+1
h , to get

mh(θ
n+1
h , θn+1

h )−mh(θ
n
h , θ

n
h)

∆t
−mh

(
θnh , ∂

•
hθ

n
h

)

=
mh(θ

n+1
h , θn+1

h )−mh(θ
n
h , θ

n
h)

2∆t
+

1

2
∆tmh

(
∂•hθ

n
h , ∂

•
hθ

n
h

)

+
mh(θ

n+1
h , θn+1

h )−mh(θ̃
n+1
h (·, tn), θ̃n+1

h (·, tn))

2∆t
, (4.2)

where θ̃n+1
h (·, tn) = θnh +∆t∂•hθ

n
h .

Lemma 4.2 ([9]). Under assumption (4.1), the bilinear form has the following estimate:

∣∣∣mh

(
θn+1
h , θn+1

h

)
−mh

(
θ̃n+1
h (·, tn), θ̃n+1

h (·, tn)
)∣∣∣ 6 c∆tmh

(
θn+1
h , θn+1

h

)
, (4.3)

where ∆t 6 τ0, τ0 and c are constants related to the model.

Assumption 4.1. In the CH phase-field model of the diblock copolymer, the nonlinear

term is estimated as follows:

|f(φnh)| 6 L|φnh|, (4.4)

where L is a constant.

When conducting stability analysis of the current scheme, it is unavoidable to make

assumptions about the nonlinear term. This represents a limitation of the stabilized

methods employed in the theoretical analysis. A common compromise is to modify the

form of the nonlinear term to control its bound, as referenced in [33].

The following Hölder inequality is intended to deal with the term mh(φ̄
n
h, η

n
h).
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Lemma 4.3. Suppose p > 1 and 1/p + 1/q = 1. If µnh(z, t) ∈ Lp(Ω), υnh(z, t) ∈ Lp(Ω),
then ∫

Ω
µnh(z, t)υ

n
h(z, t)dz 6

(∫

Ω
|µnh(z, t)|

p

) 1

p
(∫

Ω
|υnh(z, t)|

q

) 1

q

. (4.5)

In particular, if p = 2, inequality (4.5) is applied, the estimate for term mh(φ̄
n
h, φ

n
h) is as

follows:

mh

(
φ̄nh, φ

n
h

)
=

1

|Ω|

∫

Ω
φnhdz

∫

Ω
φnhdz

6
1

|Ω|

(∫

Ω
12dz

) 1

2
(∫

Ω
(φnh)

2dz

) 1

2
(∫

Ω
12dz

) 1

2
(∫

Ω
(φnh)

2dz

) 1

2

= mh

(
φnh, φ

n
h

)
. (4.6)

Lemma 4.4. For ∆t̂ > 0, k > 0, let âk, b̂k, ĉk, d̂k and C̄ be nonnegative numbers, if

âr +∆t̂

r∑

k=0

b̂k 6 ∆t̂

r−1∑

k=0

d̂kâk +∆t̂

r−1∑

k=0

ĉk + C̄, ∀r > 1. (4.7)

Then

âr +∆t̂
r∑

k=0

b̂k 6 exp

(
∆t̂

r−1∑

k=0

d̂k

)(
∆t̂

r−1∑

k=0

ĉk + C̄

)
, ∀r > 1. (4.8)

Lemma 4.4 is known as the discrete Gronwall Lemma [17, 32]. The following in-

equality

ab 6 τa2 +
1

4τ
b2, ∀τ > 0 (4.9)

will be used when dealing with nonlinear terms. The notation

‖φnh‖
2 = mn

h

(
φnh, φ

n
h

)
(4.10)

is to simplify writing.

Theorem 4.1. Let ∆t = T/N be the step size, satisfying c∆t 6 1/2, where N is a positive

integer, T represents the final time, and c is a constant associated with the model. For

the CH phase-field model of the diblock copolymer, the fully discrete solution φnh for the

first-order semi-implicit scheme is bounded in L2-norm as follows:

(1− c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=0

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6 e
2cǫ3+ML2

2ǫ3
T

(
M

cǫ
‖ψ0

h‖
2 + ‖φ0h‖

2

)
. (4.11)
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Proof. Let ηn+1
h = φn+1

h , ηnh = φnh, ξn+1
h = ψn+1

h , and by using Lemma 4.1, obtain





1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)

+
1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ̃
n+1
h (·, tn), φ̃n+1

h (·, tn))
)

+
1

2
∆tmh

(
∂•hφ

n
h, ∂

•
hφ

n
h

)
+Mah

(
ψn+1
h , φn+1

h

)

+Mαǫ
(
mh(φ

n
h, φ

n
h)−mh(φ̄

n
h, φ

n
h)
)
= 0,

mh

(
ψn+1
h , ψn+1

h

)
= ǫah

(
φn+1
h , ψn+1

h

)
+

1

ǫ
mh

(
f(φnh), ψ

n
h

)
.

(4.12)

Using Lemma 4.2 and merging equations, we get

1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
+

1

2
∆tmh

(
∂•hφ

n
h, ∂

•
hφ

n
h

)

+
M

ǫ
mh

(
ψn+1
h , ψn+1

h

)
−
M

ǫ2
mh

(
f(φnh), ψ

n
h

)

+Mαǫ
(
mh(φ

n
h, φ

n
h)−mh(φ̄

n
h, φ

n
h)
)

6
c

2
mh

(
φn+1
h , φn+1

h

)
. (4.13)

Using Eq. (4.9) and Lemma 4.3 to deal with the nonlinear term and the termmh(φ
n
h, φ

n
h)

−mh(φ̄
n
h, φ̄

n
h), we obtain that

1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
+

1

2
∆tmh

(
∂•hφ

n
h, ∂

•
hφ

n
h

)

+
M

ǫ
mh

(
ψn+1
h , ψn+1

h

)

6
c

2
mh

(
φn+1
h , φn+1

h

)
+
M

ǫ2

(
1

4ǫ
mh

(
f(φnh), f(φ

n
h)
)
+ ǫmh(ψ

n
h , ψ

n
h)

)
. (4.14)

Summing the above equation from 0 to n− 1, we get

1

2∆t

(
mh(φ

n
h, φ

n
h)−mh(φ

0
h, φ

0
h)
)
+

1

2
∆t

n−1∑

i=0

mh

(
∂•hφ

i
h, ∂

•
hφ

i
h

)

+
M

ǫ

(
mh(ψ

n
h , ψ

n
h)−mh(ψ

0
h, ψ

0
h)
)

6
c

2

n∑

i=1

mh

(
φih, φ

i
h

)
+
M

4ǫ3

n−1∑

i=0

mh

(
f(φih), f(φ

i
h)
)
. (4.15)

Using Assumption 4.1 and Eq. (4.10), we obtain

1

2∆t

(
‖φnh‖

2 − ‖φ0h‖
2
)
+

1

2
∆t

n−1∑

i=0

‖∂•hφ
i
h‖

2 +
M

ǫ

(
‖ψn

h‖
2 − ‖ψ0

h‖
2
)
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6
c

2

n∑

i=1

‖φih‖
2 +

ML2

4ǫ3

n−1∑

i=0

‖φih‖
2. (4.16)

By multiplying both sides by 2∆t and simplifying, we arrive at the result

(1− c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=0

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6

(
c+

ML2

2ǫ3

)
∆t

n−1∑

i=1

‖φih‖
2 +

2M∆t

ǫ
‖ψ0

h‖
2 + ‖φ0h‖

2. (4.17)

Applying inequality n∆t 6 N∆t = T and Lemma 4.4, we have

(1− c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=0

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6 e
2cǫ3+ML2

2ǫ3
T

(
M

cǫ
‖ψ0

h‖
2 + ‖φ0h‖

2

)
, (4.18)

which is the proof for the Theorem 4.1.

Theorem 4.2. Assume that N is a positive integer and T represents the eventual moment.

Let ∆t = T/N be the time step, which satisfies the condition 2c∆t 6 1/2, where c is

a constant that depends on the model. For the CH phase-field model of the diblock copoly-

mer, the fully discrete solution φnh for the second-order semi-implicit scheme is bounded in

L2-norm as follows:

(1− 2c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=1

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6 e
6cǫ3+9ML2

2ǫ3
T

(
Mαǫ

2c
‖φ0h‖

2 + ‖φ1h‖
2 +

1

16c2
‖∂•hφ

0
h‖

2 +
M

2cǫ
‖ψ1

h‖
2

)
. (4.19)

Proof. Let

ηn+1
h = φn+1

h , ηnh = φnh, ηn−1
h = φn−1

h ,

ξn+1
h = ψn+1

h , ξnh = ψn
h , ξn−1

h = ψn−1
h .

Combining the two equations, we have

1

∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
− 2mh

(
φnh, ∂

•
hφ

n
h

)

−

(
1

2∆t

(
mh(φ

n
h, φ

n
h)−mh(φ

n−1
h , φn−1

h )
)
−mh

(
φn−1
h , ∂•hφ

n−1
h

))

+
1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
+
M

ǫ
mh

(
ψn+1
h , ψn+1

h

)
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−
M

ǫ2
(
2mh

(
f(φnh), ψ

n
h

)
−mh

(
f(φn−1

h ), ψn−1
h

))

+ 2Mαǫ
(
mh(φ

n
h, φ

n
h)−mh(φ̄

n
h, φ

n
h)
)

−Mαǫ
(
mh(φ

n−1
h , φn−1

h )−mh(φ̄
n−1
h , φn−1

h )
)
= 0. (4.20)

Using Lemma 4.1, we obtain

1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
+∆tmh

(
∂•hφ

n
h, ∂

•
hφ

n
h

)

+
1

∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ̃
n
h(·, t

n), φ̃nh(·, t
n))
)
−

1

2
∆tmh

(
∂•hφ

n−1
h , ∂•hφ

n−1
h

)

−
1

2∆t

(
mh(φ

n
h, φ

n
h)−mh(φ̃

n
h(·, t

n−1), φ̃nh(·, t
n−1))

)

+
M

ǫ
mh

(
ψn+1
h , ψn+1

h

)
−
M

ǫ2
(
2mh

(
f(φnh), ψ

n
h

)
−mh(f(φ

n−1
h ), ψn−1

h )
)

+ 2Mαǫ
(
mh(φ

n
h, φ

n
h)−mh(φ̄

n
h, φ

n
h)
)

−Mαǫ
(
mh(φ

n−1
h , φn−1

h )−mh(φ̄
n−1
h , φn−1

h )
)
= 0. (4.21)

Applying Lemma 4.2, we have

1

2∆t

(
mh(φ

n+1
h , φn+1

h )−mh(φ
n
h, φ

n
h)
)
+∆tmh

(
∂•hφ

n
h, ∂

•
hφ

n
h

)

−
1

2
∆tmh

(
∂•hφ

n−1
h , ∂•hφ

n−1
h

)
+
M

ǫ
mh

(
ψn+1
h , ψn+1

h

)

+ 2Mαǫ
(
mh(φ

n
h, φ

n
h)−mh(φ̄

n
h, φ

n
h)
)

−Mαǫ
(
mh(φ

n−1
h , φn−1

h )−mh(φ̄
n−1
h , φn−1

h )
)

6 cmh

(
φn+1
h , φn+1

h

)
+
c

2
mh

(
φnh, φ

n
h

)

+
M

ǫ2
(
2mh(f(φ

n
h), ψ

n
h )−mh(f(φ

n−1
h ), ψn−1

h )
)
. (4.22)

Summing the Eq. (4.22) from 1 to n− 1 and performing simplification, we get

1

2∆t

(
mh(φ

n
h, φ

n
h)−mh(φ

1
h, φ

1
h)
)
+

1

2
∆t

n−1∑

i=1

mh

(
∂•hφ

i
h, ∂

•
hφ

i
h

)

+
M

ǫ

n∑

i=2

mh(ψ
i
h, ψ

i
h) +Mαǫ

n−1∑

i=1

(
mh(φ

i
h, φ

i
h)−mh(φ̄

i
h, φ

i
h)
)

+Mαǫ
(
mh(φ

n−1
h , φn−1

h )−mh(φ̄
n−1
h , φn−1

h )
)

6 c

n∑

i=2

mh

(
φih, φ

i
h

)
+
c

2

n−1∑

i=1

mh

(
φih, φ

i
h

)

+Mαǫ
(
mh(φ

0
h, φ

0
h)−mh(φ̄

0
h, φ

0
h)
)
+

1

2
∆tmh

(
∂•hφ

0
h, ∂

•
hφ

0
h

)
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+
M

ǫ2

(
n−1∑

i=1

mh

(
f(φih), ψ

i
h

)
+mh

(
f(φn−1

h ), ψn−1
h

)
−mh

(
f(φ0h), ψ

0
h

)
)
. (4.23)

Using inequality (4.9) (let τ = ǫ/3) and Lemma 4.3, we have

1

2∆t

(
mh(φ

n
h, φ

n
h)−mh(φ

1
h, φ

1
h)
)
+

1

2
∆t

n−1∑

i=1

mh

(
∂•hφ

i
h, ∂

•
hφ

i
h

)
+
M

ǫ

n∑

i=2

mh

(
ψi
h, ψ

i
h

)

6 c

n∑

i=2

mh

(
φih, φ

i
h

)
+
c

2

n−1∑

i=1

mh

(
φih, φ

i
h

)
+Mαǫmh

(
φ0h, φ

0
h

)
+

1

2
∆tmh

(
∂•hφ

0
h, ∂

•
hφ

0
h

)

+
3M

ǫ2

(
3

4ǫ

n−1∑

i=1

mh

(
f(φih), f(φ

i
h)
)
+
ǫ

3

n−1∑

i=1

mh(ψ
i
h, ψ

i
h)

)
. (4.24)

Using Assumption 4.1 and Eq. (4.10), we get

1

2∆t

(
‖φnh‖

2 − ‖φ1h‖
2
)
+

1

2
∆t

n−1∑

i=1

‖∂•hφ
i
h‖

2 +
M

ǫ

(
n∑

i=2

‖ψi
h‖

2 −
n−1∑

i=1

‖ψi
h‖

2

)

6 c

n∑

i=2

‖φih‖
2 +

c

2

n−1∑

i=1

‖φih‖
2 +Mαǫ‖φ0h‖

2 +
1

2
∆t‖∂•hφ

0
h‖

2 +
9ML2

4ǫ3

n−1∑

i=1

‖φih‖
2. (4.25)

Multiplying both sides of above equation by 2∆t and performing simplification, we

have

(1− 2c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=1

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6

(
3c+

9ML2

2ǫ3

)
∆t

n−1∑

i=0

‖φih‖
2 + 2Mαǫ∆t‖φ0h‖

2 + ‖φ1h‖
2

+ (∆t)2‖∂•hφ
0
h‖

2 +
2M∆t

ǫ
‖ψ1

h‖
2. (4.26)

Applying Lemma 4.4 and inequality n∆t 6 N∆t = T , we get

(1− 2c∆t)‖φnh‖
2 + (∆t)2

n−1∑

i=1

‖∂•hφ
i
h‖

2 +
2M∆t

ǫ
‖ψn

h‖
2

6 e
6cǫ3+9ML2

2ǫ3
T

(
Mαǫ

2c
‖φ0h‖

2 + ‖φ1h‖
2 +

1

16c2
‖∂•hφ

0
h‖

2 +
M

2cǫ
‖ψ1

h‖
2

)
, (4.27)

which is the second-order stability analysis.

Let

G1 :=
2cǫ3 +ML2

2ǫ3
, G2 :=

6cǫ3 + 9ML2

2ǫ3
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be the growth factors. It is important to note that the constant c depends solely on

the surface velocity, allowing us to select a relatively large time step size to ensure

that 1 − 2c∆t > 0. However, given the large magnitude of G1 and G2, which is of

order O(1/ǫ3), there is a significant risk of numerical instability or divergence when

setting ∆t = O(1). Our main objective is to bolster stability by incorporating linear

stabilization terms. Based on our experience on the stability analysis of the Allen-Cahn

equation on the evolving surface, it can be expect that the growth factors can be re-

duced to O(1/(ǫ3 + β∆t)), indicating superior stability when the stabilized coefficient

is higher. However, it is important to note that extremely large β values may compro-

mise accuracy. After conducting extensive numerical testing, we selected a stabilized

parameter β within the range of 6 to 8 for our study.

5. Numerical simulation

Numerical experiments are performed in this section to exhibit the convergence,

mass evolution and stability of the SSI scheme. Additionally, the behavior of CH model

of diblock copolymers on evolving surfaces is investigated.

5.1. Test of convergence

We display the orders of the convergence for the proposed model. The H1- and

L2-errors are considered. We choose the parameters ǫ = 1, β = 6, α = 1, T0 = 0,

T = 0.1, M = 1, take

v(x, t) = n(x, t)

as the velocity, and conduct the experiment on the surface

Γ(x, t) = x2 + y2 + z2 − (0.5 + t)2,

where n(x, t) is the unit outer normal vector of the surface. The time steps are ∆t = h2

and ∆t = 0.1h for the first-order and second-order schemes, respectively. We set the

exact solution as

φ(x, t) = e−t sin(πxyz2).

The errors and convergence orders are shown in Fig. 2.

5.2. Test of the stability

In this subsection, we display the stability of presented numerical scheme. As pre-

viously stated, the stabilized term plays an essential role in maintaining numerical

simulation stability for a long time. Therefore, we will test whether the stabilized term

has a positive effect on the numerical simulation.

The initial value is set to be

φ0(x, t) = 0.05rand,
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where rand is a random value in [−1, 1]. In order to compare the effect of the stabilized

terms on stability, the initial value is the same for the experiment with different stabi-

lized coefficients. The parameters are ǫ = 0.025, α = 20000, h = 0.0512, ∆t = 0.005,

M = 1. The evolving surface is chosen to be

Γ(x, t) = x2 + y2 + z2 −
(
0.6 + 0.15 sin(2πt)

)2

with the velocity

v(x, t) = 0.3π cos(2πt)n(x, t).

The numerical simulation with β = 8 performs well, as can be seen from the findings

in Fig. 3. When β = 0, the numerical solution blows up after a few time steps. This can

lead to the conclusion that the algorithm with the stabilized term is more stable than

the algorithm without stabilized term, that is, the SSI method is effective.

(a) The convergence of first-order scheme (b) The convergence of second-order scheme

Figure 2: The convergence orders of the numerical method.

(a) β = 8 (b) β = 0

Figure 3: Comparison of numerical methods with and without stabilized term.
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5.3. Spinodal decomposition and evolution of mass

This part researches the dynamics and mass evolution of the proposed model thro-

ugh some experiments on different evolving surfaces.

Experiments are performed on a sphere with a first-order scheme. The initial value

is set to

φ0(x, t) = φ0 + 0.05rand. (5.1)

In this part, all initial values are according to (5.1). The evolving surface is

Γ(x, t) = x2 + y2 + z2 −
(
2.2 + 0.25 sin(2πt)

)2
(5.2)

with the velocity

v(x, t) = 0.5π cos(2πt)n(x, t). (5.3)

The other parameters are ǫ = 0.025, β = 6, α = 20000, h = 0.0525, ∆t = 0.005, M = 1.

The process of the spinodal decomposition is shown in Figs. 4-5.

We also conduct experiments to investigate the mass evolution and spinodal de-

composition using the second-order scheme. The parameters are set to ǫ = 0.025,

α = 20000, β = 6, h = 0.0271, ∆t = 0.002, M = 0.0025. The process of spinodal

decomposition will evolve on the evolving surface with the initial surface

Γ(x) =
(
1−

√
x2 + y2

)2
+ z2 − 0.32, (5.4)

(a) t = 0.01 (b) t = 2.75 (c) t = 20.25

Figure 4: Spinodal decomposition with φ=0.

(a) t = 0.01 (b) t = 2.75 (c) t = 20.25

Figure 5: Spinodal decomposition with φ=0.4.
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and the velocity

v(x, t) = 0.008φn(x, t). (5.5)

Figs. 6-8 show the mass evolution and phase separation phenomena, respectively.

We further confirm that the mass error is smaller when the mesh is finer. We take

two different mesh sizes 0.0523 and 0.0312 for comparison. The initial surface and the

velocity are chosen with reference to Eqs. (5.4) and (5.5). The other parameters are

ǫ = 0.05, α = 20000, β = 6, ∆t = 0.001, and M = 0.005. The plots in Fig. 9 indicate

the desired result.

(a) (b)

Figure 6: (a) The evolution of the mass. (b) The relative mass error.

(a) t = 0.1 (b) t = 1 (c) t = 5

Figure 7: Spinodal decomposition with φ=0.

(a) t = 0.2 (b) t = 2 (c) t = 10

Figure 8: Spinodal decomposition with φ=0.3.
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(a) φ̄ = 0 (b) φ̄ = 0.3

Figure 9: Comparison of errors of big and small discrete dimensions.

For the diversity of experiments, we perform experiments on different surfaces and

get similar phenomena. The parameters are set to ǫ = 0.025, α = 20000, β = 6,

h = 0.0405, ∆t = 0.0025, M = 0.002. The process of spinodal decomposition will

evolve on the evolving surface with the initial surface

Γ(x) = (1 + 4x2)(1 + 4y2)(1 + 4z2) + 64xyz + 4x2 + 4y2 + 4z2 − 6, (5.6)

and the velocity

v(x, t) = 0.005φn(x, t). (5.7)

The results of the experiment are shown in Figs. 10 and 11. Some conclusions can be

drawn from the performance of these experiments. From Fig. 6, we can see that our

model and algorithm satisfy the mass conservation property. Different phase separation

experiments present the following conclusion. When we set φ0 = 0, which indicates

that the concentrations of the two blocks are approximately equal, the surface shows

a process of striped changes. When φ0 = 0.3 or 0.4, it indicates that the two block

concentrations have a large difference, and the surface will appear to be a point-shaped

evolution process.

(a) t = 0.2 (b) t = 1 (c) t = 10

Figure 10: Spinodal decomposition with φ=0.
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In addition, we test on a rabbit-shaped surface that our model and method are also

applicable to surfaces with large curvature. We chose the following parameters: S = 6,

ǫ = 0.025, M = 0.005, α = 20000, ∆t = 0.001, H = 0.0248. The velocity is

v(x, t) = 0.06[−y, x, 0] + 0.008 sin(t)n(x, t). (5.8)

The result of spinodal decomposition can be seen in Fig. 12.

(a) t = 0.2 (b) t = 1 (c) t = 10

Figure 11: Spinodal decomposition with φ=0.3.

(a) t = 0.01 (b) t = 1 (c) t = 10

(d) t = 0.01 (e) t = 1 (f) t = 10

Figure 12: Spinodal decomposition on surfaces with large curvature. (a)-(c) Spinodal decomposition with

φ=0. (d)-(f) Spinodal decomposition with φ=0.3.

6. Conclusion

In this work, we explore the CH phase-field model of diblock copolymers on evolv-

ing surfaces. The main work is to establish the CH model of diblock copolymers on
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evolving surfaces and to design an efficient numerical algorithm for the model. The

mass conservation property of the proposed model on evolving surfaces is preserved,

as well as briefly proved. To achieve a numerical method that is linear, highly accu-

rate, and stable, the stabilized semi-implicit approach is incorporated into the ESFEM.

Theoretically, we analyze the first- and second-order stability results of the numerical

method. Extensive numerical experiments explore the performance of CH model of di-

block copolymers on evolving surfaces. We test the convergence of the model, evaluate

the stability of the SSI scheme, demonstrate the mass conservation property, and show

the spinodal decomposition process. In future research, we intend to conduct a deeper

exploration of the error analysis related to our proposed numerical method. In ad-

dition, we also consider extending the CH model of diblock copolymers on evolving

surfaces to N-component systems by coupling N equations.
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