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Abstract. This work focuses on the efficient numerical simulation of the Cahn-
Hilliard phase-field model of diblock copolymers on evolving surfaces. The model in-
tegrates Cahn-Hilliard dynamic of diblock copolymers with partial differential equa-
tion on evolving surfaces, which has the property of geometric complexity, non-
linearity and mass conservation. In the numerical simulation, the space-time dis-
cretization of the proposed model is realized by the evolving surface finite element
method. The stabilized semi-implicit approach is included in the framework of the
evolving surface finite element method to produce a linear, stable, conserved and
high-accurate scheme for long time numerical simulations. The stability analysis of
the designed numerical method is established. Through several numerical experi-
ments, the convergence and stability of the numerical method are investigated. In
addition, spinodal decomposition is performed to research the mass evolution and
dynamics of the Cahn-Hilliard model of diblock copolymers on different evolving
surfaces.
AMS subject classifications: 35J05, 65N30, 92E10
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1. Introduction

A diblock copolymer is a copolymer formed by the alternating arrangement of two
different monomers repeatedly. It is widely used in nanotechnology [1,2,7], biomathe-
matics [13,25], film materials [30,34], and other fields due to its many unique proper-
ties. The Cahn-Hilliard (CH) phase-field model of diblock copolymers is a mathematical
model to describe the related evolution behaviors [3,4,23,35]. It is based on the CH
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equation with considering the concentration profiles of two different monomers on the
copolymer chain. The idea of modeling is to introduce an order parameter to repre-
sent the difference between the concentration of the two categories of monomers. The
evolution of the system can be viewed as the minimization of the total free energy
functional in CH dynamics. The energy of the system is given by the nonlocal Ohta-
Kawasaki functional which containing a nonlocal term that represents the first-order
effects of the connectedness of the monomer chains [4, 6]. In [4, 24, 37], the authors
have investigated the CH phase-field model of diblock copolymers, including the es-
tablishment of mathematical models, the design of reliable and effective numerical
methods, and the numerical simulation in two- and three-dimensions.

The modeling of diblock copolymers on evolving domains is more general than that
on two- and three-dimensional stationary domains. Therefore, it is interesting to in-
vestigate the dynamic behavior of this model on evolving surfaces, which corresponds
to simulation studies on non flat and evolving substrates. This study is devoted to
present the related mathematical modeling and numerical simulation approach. To ex-
plore the performance of the diblock copolymers on evolving surfaces, we construct the
model by combining the CH dynamics of diblock copolymers and the partial differen-
tial equations on evolving surfaces. On the evolving surface, the developed model has
the physical property of mass conservation. However, the velocity can be regarded as
a force that is external, so the energy is not strictly dissipated. The property of energy
is not studied in this paper, and more related content can be found in [19, 20].

To solve the CH model of diblock copolymers on the evolving surface, the related
space-time discretization approaches should be reviewed. The evolving surface finite
element method (ESFEM) [9-11,27], stands as a widely-used space-time discretiza-
tion technique that relies on a triangular mesh and variational formulation. Meshless
methods are a class of methods that avoid mesh generation and have high accuracy.
The common meshless approaches include the element-free Galerkin method [26,31],
the radial basis function finite differences (RBF-FD) method [22,29], the moving least
squares method [14,15]. Although they avoid mesh generation, the numerical stability
depends strongly on the distribution of surface nodes in the local stencil, and the re-
lated theoretical analyses are hard to be given. Taking into account both the operability
of programming and the complexity of theoretical investigation, we select ESFEM as
the fundamental method for space-time discretization in this study.

Another difficulty in designing the numerical method is avoiding the numerical
instability caused by the small interface parameter for long time simulation. There
are some mature and efficient numerical methods for settling models in 2D and 3D.
Invariant energy quadratization (IEQ) [4,24] and scalar auxiliary variable (SAV) meth-
ods [23] are widely used in the design of numerical algorithms. The fundamental idea
behind these two approaches is to create a new equation that is of equal value to the
original equation by bringing in suitable auxiliary variables and formulating the energy
functional into a quadratic form. For the IEQ and SAV schemes, the numerical solu-
tion can only guarantee that the modified energy is monotonically nonincreasing, but
it cannot obtain stability with respect to the original energy.
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The fully implicit or fully explicit discrete methods [21,28] have high requirements
on the step size and have no marked superiority in the stable and long-term numerical
simulation. The traditional semi-implicit (SI) scheme [5,26] combines the strengths of
full implicit and full explicit but still has a little limit on step size. The stabilized semi-
implicit (SSI) method [12,18,33,36] is obtained by adding stabilized terms to the SI
method, which can effectively settle the instability caused by the rigidity of the model.
As previously stated, this paper does not consider the related properties of energy, and
this method can well balance the rigidity of the model, which is suitable for dealing
with this problem. Therefore, utilizing the ESFEM framework in conjunction with the
SSI scheme, we devise an efficient numerical method for evolving surfaces.

The rest of this paper is organized as follows. In Section 2, the CH model of diblock
copolymers on evolving surfaces is constructed, and the mass conservation property
is proved. In Section 3, the corresponding numerical algorithm is designed for the
model. In Section 4, the stability of the numerical method is analyzed. Section 5
presents numerical simulations that aim to demonstrate the validity of the model and
the efficacy of the numerical method. Furthermore, the dynamics of the proposed
model are investigated by experiments of spinodal decomposition on different evolving
surfaces.

2. The CH model of diblock copolymers on evolving surfaces

In this part, the CH model of diblock copolymers on evolving surfaces is introduced.
For V¢t € [0,T], T > 0, let I'(t) be a smooth closed evolving hypersurface in N'(t) C R3.
The velocity field v determines the orientation of the evolution of the surface I'(¢), and
I'o = I'(0) is the initial surface. Introduce the level set function n(x,t) € C* (N(t)),
Vn(x,t) # 0, such that I'(¢) has the following zero-level set expression:

L) = {(xt) = (z.y,2,t) € N(t) [ n(x,t) = 0}

and
n(x,t) >0, xeNT(t),
n(x,t) <0, xeN(t),

where Nt (t) and N~ (t) denote that the surface I'(¢) divides N (¢) into inner and outer
parts such that N (¢) YN~ () = 0 and N () JT'(t) UN~(¢) = N(t) are satisfied.
The unit normal vector at V(x,t) € I'(¢) is n(x,t) = Vn(x,t)/|Vn(x,t)|.
To facilitate the description of the following notation, the space-time region Ry is
defined as
Rr= |J T() x {t}.

t€[0,T]
Take the function v : Rt — R and define the material derivative

ou
U= — -0, 2.1
0%u N +uV v (2.1
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For any function u on the surface I'(¢), define its tangential gradient and tangential
divergence as Vpyu = Vu — Vu - nn' and Vr@u = trace(Vp)u). Laplace-Beltrami
operator of u is defined as Arpyu = Vi - V.

In [8], the differentiation of time dependent surface integrals can be achieved by
the use of the transport formulae, which have been demonstrated.

Lemma 2.1. Consider an evolving surface, denoted as I'(t), which possesses a velocity field
given by v(x,t), for smooth functions u(x,t) and g(x,t), there are

d

— udx = 0%u +uVpg) - v dx, (2.2)
dt Jre) r()

d

— ugdx = / 0°ug +ud®g + ugVr) - v dx. (2.3)
dt Jr) r()

The CH model of diblock copolymers is constructed by the phase field method.
Phase field variable ¢ € L?(T) is introduced to represent the concentration difference
of two monomers. The evolution of the system is governed by a coarse-grained free
energy functional, expressed as follows:

B = [ (5IVoP+ 17 (@) ao

(t)
L[ e - d6w - e, @4
r(e) Jre)
where F(¢) = (¢? — 1)?/4 is the bulk Ginzburg-Landau double well potential,
_
= e dx, Gz —y)= -z —
= ] Jo 0 C@— v =@ )

is Green’s function, « is a positive parameter and ¢ is interface width. By using the
Cahn-Hilliard dynamics for ¢, the CH model of diblock copolymers on evolving surfaces
is governed by equations

0°¢ + ¢V - v = MAry,
SE(e) (2.5)

5o

where M represents mobility. The final model system is governed by the following
equations:

8°¢ + ¢V -v = MApy) (¥ + (Arp) tae(d —¢)), xeT(t), te(
= —eArpo + /() xel(t), te(

¢ = ¢o, ‘ xel(t), t=0

0
0,

|, (2.6)
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where f(¢) = F(¢) = ¢> — ¢. The velocity can be perceived as an external force,
thus the energy is not solely dissipated. Hence, the property of energy is not the focus
of this paper. The model (2.6) satisfies the mass conservation property. The following
theorem gives the proof.

Theorem 2.1. The model presented in (2.6) fulfills the mass conservation property, namely,

i )
— ¢dx = 0. 2.7
dt F(t)
Proof. Using Lemma 2.1 and (2.6), we obtain
d oo dx + VvV d
- X X
dt ) ‘2 ) I'(t) rt)¥
= —e </ (¢ —d)p dx) + $0%p dx. (2.8)
r(t) I(t)
Let ¢ = 1, and Eq. (2.8) can be rewritten as
d od od L / od / d 0 (2.9)
— X = —oe€ X — = X x| =0. .
dt Jrw () L) Jre (1)
The mass conservation property is proved. O

3. Numerical method

In this section, the numerical methods for solving the CH model of diblock copoly-
mers is presented. On the basis of ESFEM, we combine the SSI method to construct the
numerical schemes.

3.1. Evolving surface finite element method (ESFEM)

Choosing the test functions n, ¢ in H'(I'(¢)), and using Lemma 2.1, the weak form
of (2.6) is denoted by

d _
— / ¢on dx + M/ Vi ¥Vren dx + Mae / (¢ — d)n dx
dt Jre r(t) r(t)

= $0°n dx, (3.1)
()

1
vedx=c [ VroVrpgdxt 7
() €

f€ dx.
)

I(t) It

It is difficult to directly divide the mesh, define the basis function, and perform in-
tegration on the original surface I'. Therefore, the first step of the ESFEM is to perform
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Figure 1: Triangulated mesh discretization of surfaces.

the surface approximation, that is, to use the discrete surface spliced by the quasi-
uniform piecewise triangular mesh to approximately replace I" as the computational
area. The discretized surface, denoted I';,, is composed of non-overlapping and quasi-
uniform triangles ey, ;,(t), as shown in Fig. 1. The discrete surface generation technique
used in this paper is a matching algorithm for level set surfaces, which can be referred
to [16] for details.

Denote the set of triangles as {ej, x(t)};,, then the discrete mesh can be repre-
sented as

Ne
Th(t) = | enn(®),
k=1

where N, is the number of triangles. The mesh size parameter of the discretized surface
'y is h, h = maxfj;l hi, where hy, is the longest edge of e, ;(t). When t = 0, P% is
a polyhedral approximation of the initial surface I'’ and restricts the nodes {X?}j\[:”1 of
I'Y to lie on I'’. We evolve the node {Xj(t)};vﬁl by the surface velocity
dX; ,
Tt](t) =v(X;(t),t), j=1,...,Np, (3.2)

where N, is the number of nodes. Let Nbea positive integer and T be the total time,
the time step At := T'/N and t" = nAt. The finite element space is defined as

Sp(t) = {gbh(X, t) € CUT (1)) | én(X,t) is linear polynomial on ey, (t),
Venk(t) € {enk(t) gil}
= Span{x;(X,t) | j =1,2,...,N,} C H'(T;(t)). (3.3)
The node basis functions in the space S}, are defined by

1’ J:ka .
(X, 1) = k=1,2,... N, (3.4)
X3 (X ?) {0, itk ’
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Let S = Sp(t"), Z = Zn(x,t"), Y} = Yy (x,t") € S'. We define the following bilinear
forms:
mp (23, YY) :/ Z1Ydx,
Tal®) (3.5)
an(Zy,Yy') = /F} o V. Zh YV, Y dx.

Next, the discrete solution of the finite element can be expressed as
NP NP
Gh=D_onXTES Yh=>Y wix} €S, (3.6)
=1 j=1

where ¢} and ¢ are nodal values at ¢". An arbitrary point x = X(¢) € I';(t), material
velocity vy (%, t) is given by

d

Np
SX(0) = v (1), o (X(0),1) = ; %xj(t)xj (x.1). 3.7)

We define the space-discrete material derivative on each element of T',(¢) as

. 0
8th(X, t)‘eh(t) = EYh(X’ t) + ?)h(X, t) . aYh(X, t). (3.8)

The basis functions satisfy the transport property that [9, 10]
ohxj(x,t)=0, j=1,...,N. (3.9)

With this property, there will be no velocity or curvature term in the evolving surface
finite element scheme. In addition, for Y;* € S7, V"™ € S, we define

N

1
Ry =) (T =Y)Nj € Sy, (3.10)
j=1

which will be used for theoretical analysis.

3.2. Stabilized semi-implicit (SSI) scheme

The purpose of introducing the SSI method is to avoid the numerical instability
caused by the small interface width and nonlinearity. The substance of the SSI method
is to add the corresponding stabilized terms based on the original scheme. This method
can significantly improve the stability, which is beneficial to long time numerical simu-
lations.
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The first-order scheme of the SSI method for (3.1) is shown in

(1
A7 (mn @) — (6 1)) + Man (9,

+Mae (mp(6F,nf) — mu(@p,np)) = ma(dF, o),
(U 6) = can(op ) + T (7 (67),67)
2 (a0, = (g ).

where 3 is the coefficient of the stabilized terms. And the second-order scheme of the
SSI method is as follows:

s (3 (@7 ™) — dmn (@5 0) + ma (g0 h)
+May, (Y ) + 2Mae (ma(oF, n) — ma(dF, i)
—Mae (mp(¢ sy ") = ma(@y " my )
= 2y, (&5, O4f) — ma (5L DY), (3.12)
ma (VP ) = ean (€
2 (2mi (65 6) — ma(F(@ ), 67)
PO ot ) — (g 61))

Theorem 3.1. The first-order (3.11) and second-order (3.12) of the numerical scheme
fulfill the mass conservation property, namely,

mp(h,1) = mp (), 1), i=1,2,...,n. (3.13)

Proof. Let n"“ =np=mn," 1 — 1. For the first-order scheme, we get

(3.11)

S (@ 1) (R 1) + Mac (a6, 1) — ma(3, 1)) =0, (3.14)

which indicates that my(¢},1) = mh(qﬁg, 1), that is, the discrete first-order scheme
(3.11) follows from the mass conservation property.
For the second-order scheme, we obtain

3y (¢, 1) — dmy (¢, 1) + my (@)1, 1) = 0. (3.15)

During the algorithm implementation, we figure out ¢} using the first-order scheme by
a small time step, then

mh(qﬁ}l,l) = mh(QS%,l). (3.16)

When n = 1, it can be obtained

mpy (7, 1) = mp (e, 1). (3.17)
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Then we can deduce that

my (¢, 1) =mp(49,1), n=1,2,...,N, (3.18)
which indicates that the second-order scheme (3.12) satisfies the mass conservation
property. U

For numerical schemes (3.11) and (3.12), we will next write their matrix forms. Let
M(t) = ( M(t)i* . S(t) = (S(t)* ,
( ) ( ( ) ) p X Np ( ) ( ( ) ‘>Np><Np (319)
T =T )y Fill) = (FEO) 0
be the matrices with the entries

MO™ = [ dx
Tn(t)
S(ty* = VX5 (%) - Vi, ) xk(x, t)dx,
Tr(t) (3.20)
I(t)j :/ X;(x,t)dx,
Ty(t)

F(tY = f(x,1).
Let U™ and V" be N,-dimensional column vectors for the solution ¢} and ¢}, then the
matrix forms of (3.11) and (3.12) respectively are

1
EMn—H M8t ntl
—65n+1 _ éMn-i-l Mn+1 Vn+1
€
<i - Mae> Mg 4 M€
At ) 5 14 , (3.21)
- MPF" — =M U™
€ €
and
3
Q—AtMn+1 M8n+1 Un+1
_esn—f—l _ @Mn—i—l Mn—l—l VnJrl
€
A
- l(zMnJT_'n - Mn—l]:‘n—l) - 5AtMnUn ’ (3.22)
€ €
where
A=|—-2Maoc+ 2\ mepm + (M LY v
- YT AL ROV’
n ZMQGMnIn M e it

L7l 1¥ien
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4. Stability analysis

In this section, we show the stability of the numerical schemes (3.11) and (3.12)
presented in the previous section. To facilitate the stability analysis while considering
the simplicity the proof, we set = 0 in this study. The proof for 8 > 0 needs more
analytical skills and is elusive. Before formally gaining the stability conclusions, we
first introduce some lemmas and estimates.

For the fully discretization, we analyze the L?-stability by assuming that the velocity
is uniformly bounded as follows:

[Vr, ) ‘”h(x’t)HLoo(rh(t)) S6 (4.1

constant ¢ depends only on the surface velocity and is independent of model parame-
ters.

Lemma 4.1 ([9]). Let 0} € Sp, 07 € SpH, to get

ma (05, 05 — m (03, 07)

—mp, (65, 05607)

At
mh(92+1, 92+1) - mh(aga 92) 1 e NN qenn
— 2At + §Atmh (3h9h, 8h6h)
mh(92+1, 92+1) - mh(af?Jrl('a tn)’ QIZLJA(" tn))

2
SAL : (4.2)

where 07 (, 17) = 07 + At30).
Lemma 4.2 ([9]). Under assumption (4.1), the bilinear form has the following estimate:
‘mh(%zﬂ’ezﬂ) B mh(ngrl("tn)a§Z+1("tn))‘ < CAfmh(GZH,@ZH), (4.3)

where At < 19, 79 and c¢ are constants related to the model.

Assumption 4.1. In the CH phase-field model of the diblock copolymer, the nonlinear
term is estimated as follows:

[f (@RI < Llopl, (4.4)

where L is a constant.

When conducting stability analysis of the current scheme, it is unavoidable to make
assumptions about the nonlinear term. This represents a limitation of the stabilized
methods employed in the theoretical analysis. A common compromise is to modify the
form of the nonlinear term to control its bound, as referenced in [33].

The following Holder inequality is intended to deal with the term my (¢}, n}).
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Lemma 4.3. Suppose p > 1l and 1/p + 1/q = 1. If pj(z,t) € LP(2), vj(z,t) € LP(Q),

then
/Q,uh(zt)vhzt </|,uhzt ) </|vhzt ) . (4.5)

In particular, if p = 2, inequality (4.5) is applied, the estimate for term my,(¢1, ¢1t) is as
follows:

_ 1
CRARE /Q grdz /Q $rdz

() () () (fore)
— mn (6, 67). (4.6)

Lemma 4.4. For A > 0, k > 0, let ay, by, &, dy, and C be nonnegative numbers, if

r — r—1
ar + AEZ Bk Z Lag + At Z Cr + C Vr > 4.7)
k=0 k=0 k=0

Then

— r—1
ar+Athk exp( ch@)(AtAZék—kC_’), vr > 1. (4.8)
k=

k=0

Lemma 4.4 is known as the discrete Gronwall Lemma [17,32]. The following in-
equality
1
ab < Ta® + 4—b2, VT >0 (4.9)
T

will be used when dealing with nonlinear terms. The notation

6RI1” = mip (¢h, &%) (4.10)
is to simplify writing.

Theorem 4.1. Let At = T'/N be the step size, satisfying cAt < 1/2, where N is a positive
integer, T represents the final time, and c is a constant associated with the model. For
the CH phase-field model of the diblock copolymer, the fully discrete solution ¢} for the
first-order semi-implicit scheme is bounded in L?-norm as follows:

2M At

n—1
(1= A Gh]* + (A8 Y 17 hl1° + (Al
=0

2063+1\/1L2T M
< ST (SR + 1R ) (411)
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Proof. Let ni ™t = ¢t it = ¢, ¢! = 7+ and by using Lemma 4.1, obtain
mi(é T o) — ma(@f, 07)

o (mn( @ G = ma (G (), G (1)

+- Atmh(a,;¢h,a,;¢h) + Map (¥, ot (4.12)

+Mae(mp (o}, o) — man(of, ¢7)) =0,

mh( ZH, ZH) — eah(¢n+17wn+1) + %mh(f((ﬁ;;),w}?).

Using Lemma 4.2 and merging equations, we get
1 1
M
(w"“,w"“) — Sl £(6R), uR)
+ MOéE(mh(% Oh) — ma(dp. d1))

< th(¢"+1,¢g+1). (4.13)

Using Eq. (4.9) and Lemma 4.3 to deal with the nonlinear term and the term my, (¢}, ¢7')
—my (P}, d), we obtain that
1 1
iz (ma(Oh T 00 ™) = ma(or, 6h)) + 5 Atma (94, 1 6h)
(wn—l—l wn—i—l)
M /1
(¢”“, AR <4—€mh(f(¢2),f(¢z‘)) + emhw}z,wﬁ)) SN CAE

Summing the above equation from 0 to n — 1, we get

1 n—1
sz (mn(@h, oh) — mi(8h, 87)) + Athh (Ohh On o))

=0
M
+ = (m (g, ) — mn (R, 00)

n
C

S3 > (Shs 0h) + 13 th (01), f(8h))- (4.15)

i=1

Using Assumption 4.1 and Eq. (4.10), we obtain

n—1
1 n 1 ® 1 M n
5z (1812 = I71%) + 520 3 1okl + == (10717 ~ 1)
=0



Stabilized FEM for the Cahn-Hilliard Phase-Field Model 115

O e MIZER
52“¢hH2+4—632H¢hHZ- (4.16)
=1 =0

By multiplying both sides by 2At¢ and simplifying, we arrive at the result

n—1
n oM At
(1= DGR + (A0 3 Ioreh I + =~ g
=0
L2\ e 2MAt
< (e 5 ) A IR + ZEEE AR + (4.17)
i=1

Applying inequality nAt < NAt =T and Lemma 4.4, we have

n—1
" o 2M At
(1= cAD)Ig]17 + (A1) Y 195 dhI1 + lh
2ee3 M L2 M
< ST (SR + 1R ) (4.18)
which is the proof for the Theorem 4.1. O

Theorem 4.2. Assume that N is a positive integer and T represents the eventual moment.
Let At = T/N be the time step, which satisfies the condition 2cAt < 1/2, where c is
a constant that depends on the model. For the CH phase-field model of the diblock copoly-
mer; the fully discrete solution ¢} for the second-order semi-implicit scheme is bounded in
L?-norm as follows:

2M At

n—1
(1= 2cAt) ¢ ]1” + (A1)> D l|ofehll” + ler 2
6ce3 yomr? Mae
<e 28 T( 165 11% + llehl> + 162uah¢hu2+—uwhuz) (4.19)

Proof. Let

1 1 —1 -1
n+ - ¢n+ Y 77}? = gbZa 77]? = gbn 9
£n+1 n+1 é&fr: _ ¢}TZ, 5 n 1

h ) - ) .

Combining the two equations, we have

(G 6 — a6 0R)) — 2 (05, 070)
1
~ (g 0 68 — a2 0170) — a0 0101™))

1 M
+ 5 (n (G 6 t) = ma@h, 6R)) + —mn (6, 07
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O mn(FR) ) —mn(FG ) )
+ 2Ma€(mh(¢Z7 (bZ) - mh(&27 (bZ))

— Mae(mp(¢) o0 1) —mu(d) ', op 1) = 0. (4.20)

Using Lemma 4.1, we obtain
1 7 (3 ® /N ® /1
—— (M (o7, 7 ) — mu(8h, o1)) + Atmy, (0507, OR o7

2At
1 . B 1
7 (mn R ) — ma(GR (1), G 17)) — S Atma(Ohey ", 0h0h )

(a6 0) =GR, B )

e M ) = AL o (1600, 08) = ma (), 0 )

+ 2Mae(mn (68, 67) — (@R 67)

— Moae(mp(¢p ", op ") —ma(dp " op ") = 0. 4.21)

Applying Lemma 4.2, we have

1

g (ma G on ) = mu (07, 61)) + Atmy (976, 9707
1 M

= 5 Atmn (Gh0 O + (T Ut

+2Mae(mpy (g5, ) — mn (6}, 1))

— Moze(mh(qSZ_l, ¢2_1) - mh(Q_SZ_l, ¢Z_1))

< emn (@ o) + (o of)
M
+ =5 (2ma(F(Dh), ¥R) — ma(F(&) i ). (4.22)

Summing the Eq. (4.22) from 1 to n — 1 and performing simplification, we get

1 1 . 4
g (a0, 08) — mn(h, 81)) + 5 ALY mi (9565 9303,)
=1

M o n-l1 o o
= > mn(@h, ) + Mae Y (mp(¢h, 64) — ma(h, ¢}))
i—2 i=1

+ Mae(mp(¢p o7 h) — mu(op L o)1)
n n—1

<o mndhodh) + 55 maoh o)
=2 =1

+ Mae(mp (6}, ¢p) — mn(d), ) + %Atmh (Ohon, Onon)
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(th (61): 1) +mn(f(Sh ), op ") - mh(f<¢2>,w2)>- (4.23)

Using inequality (4.9) (let 7 = ¢/3) and Lemma 4.3, we have

1 1= , M o
o (7 0h) — ma(9h, 81)) + §Ati§;mh (O h, Oheh) + — > (h. )
- o n-! S 1
<Y mu(hsdh) + 5 D (64, 0h) + Maemy (6], 6}) + 5 Atm, (3560, 97.67)
=2 i=1
3M [ 3=
ta <Z Z n(f(0h), f(¢ th ¢hﬂ/)h)> (4.24)
i=1

Using Assumption 4.1 and Eq. (4.10), we get
1 1 n—1 ' M n ‘ n—1 ‘
a7 Ulonll” = llon 5 honll” + — nll” = h
A7 UIerl” = llgnll®) + QAtZH@ Shll”* + =~ AR Zuw I
i=1 i=2 j
n n—1
i c i 1 . 9ML2
e llgnl? + 3 D lehll* + Mael|gh |1 + §At\l<9h¢2ll2 Z 9517, (4.25)
i=2 i=1

Multiplying both sides of above equation by 2At¢ and performing simplification, we
have

n—1
) e 2MAL

(1 —2eA0)[[ @3] + (A2 S 9565112 + [

=1
OML2\ el

< <3c+ o >Atz||¢h\|2+2MaeAt||¢2H2+ 6412

. 2MAE
+ (A2 ohen)1* + 1417 (4.26)

Applying Lemma 4.4 and inequality nAt < NAt =T, we get

n—1
n o i 2M At
(1= 2cA8)[|g7]* + (A0 D |07 41 + [
i=1
6ceS +OM L2 M ae
< T (SRR IO + g lOReRl 4 ) @)
which is the second-order stability analysis. O

Let
2ce® + M L2 Gy i 6ee® + OM L2
2¢3 R 2¢3

g1 =
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be the growth factors. It is important to note that the constant ¢ depends solely on
the surface velocity, allowing us to select a relatively large time step size to ensure
that 1 — 2cAt > 0. However, given the large magnitude of G; and G, which is of
order O(1/€3), there is a significant risk of numerical instability or divergence when
setting At = O(1). Our main objective is to bolster stability by incorporating linear
stabilization terms. Based on our experience on the stability analysis of the Allen-Cahn
equation on the evolving surface, it can be expect that the growth factors can be re-
duced to O(1/(e® + BAt)), indicating superior stability when the stabilized coefficient
is higher. However, it is important to note that extremely large $ values may compro-
mise accuracy. After conducting extensive numerical testing, we selected a stabilized
parameter $ within the range of 6 to 8 for our study.

5. Numerical simulation

Numerical experiments are performed in this section to exhibit the convergence,
mass evolution and stability of the SSI scheme. Additionally, the behavior of CH model
of diblock copolymers on evolving surfaces is investigated.

5.1. Test of convergence

We display the orders of the convergence for the proposed model. The H'- and
L?-errors are considered. We choose the parameters e = 1, 3 = 6, o = 1, Ty = 0,
T =0.1, M =1, take

v(x,t) = n(x,t)

as the velocity, and conduct the experiment on the surface
D(x,t) =22 + > + 22 — (0.5 + )2,

where n(x, t) is the unit outer normal vector of the surface. The time steps are At = h?
and At = 0.1h for the first-order and second-order schemes, respectively. We set the
exact solution as

B(x,t) = e sin(rzyz?).

The errors and convergence orders are shown in Fig. 2.

5.2. Test of the stability

In this subsection, we display the stability of presented numerical scheme. As pre-
viously stated, the stabilized term plays an essential role in maintaining numerical
simulation stability for a long time. Therefore, we will test whether the stabilized term
has a positive effect on the numerical simulation.

The initial value is set to be

#°(x,t) = 0.05rand,
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where rand is a random value in [—1, 1]. In order to compare the effect of the stabilized
terms on stability, the initial value is the same for the experiment with different stabi-
lized coefficients. The parameters are ¢ = 0.025, & = 20000, h = 0.0512, At = 0.005,
M = 1. The evolving surface is chosen to be

T(x,t) = 2+ y? + 2% — (0.6 + 0.15sin(2nt))>

with the velocity
v(x,t) = 0.3m cos(2nt)n(x, ).

The numerical simulation with 5 = 8 performs well, as can be seen from the findings
in Fig. 3. When 8 = 0, the numerical solution blows up after a few time steps. This can
lead to the conclusion that the algorithm with the stabilized term is more stable than
the algorithm without stabilized term, that is, the SSI method is effective.
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Figure 2: The convergence orders of the numerical method.
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Figure 3: Comparison of numerical methods with and without stabilized term.
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5.3. Spinodal decomposition and evolution of mass

This part researches the dynamics and mass evolution of the proposed model thro-
ugh some experiments on different evolving surfaces.
Experiments are performed on a sphere with a first-order scheme. The initial value
is set to
#°(x,t) = po + 0.05rand. (5.1)

In this part, all initial values are according to (5.1). The evolving surface is
T(x,t) = 2% + 4> + 2% — (2.2 + 0.25 sin(2nt))? (5.2)
with the velocity
v(x,t) = 0.57 cos(2nt)n(X, ). (5.3)

The other parameters are ¢ = 0.025, 8 = 6, a = 20000, h = 0.0525, At = 0.005, M = 1.
The process of the spinodal decomposition is shown in Figs. 4-5.

We also conduct experiments to investigate the mass evolution and spinodal de-
composition using the second-order scheme. The parameters are set to ¢ = 0.025,
a = 20000, 8 = 6, h = 0.0271, At = 0.002, M = 0.0025. The process of spinodal
decomposition will evolve on the evolving surface with the initial surface

I(x)= (1- Va2 +12) +22-03%, (5.4)

0015

0.005 17N

(@)t =0.01 () t=2.75 (c)t =20.25

Figure 4: Spinodal decomposition with ¢=0.

(@)t =0.01 () t=2.75 (c)t =20.25

Figure 5: Spinodal decomposition with ¢=0.4.
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and the velocity
v(x,t) = 0.008¢n(x,t).

(5.5)

Figs. 6-8 show the mass evolution and phase separation phenomena, respectively.

We further confirm that the mass error is smaller when the mesh is finer. We take
two different mesh sizes 0.0523 and 0.0312 for comparison. The initial surface and the
velocity are chosen with reference to Egs. (5.4) and (5.5). The other parameters are
e = 0.05, « = 20000, 5 = 6, At = 0.001, and M = 0.005. The plots in Fig. 9 indicate

the desired result.
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Figure 7: Spinodal decomposition with ¢=0.
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Figure 8: Spinodal decomposition with ¢=0.3.
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Figure 9: Comparison of errors of big and small discrete dimensions.

For the diversity of experiments, we perform experiments on different surfaces and
get similar phenomena. The parameters are set to ¢ = 0.025, = 20000, 8 = 6,
h = 0.0405, At = 0.0025, M = 0.002. The process of spinodal decomposition will
evolve on the evolving surface with the initial surface

D(x) = (1 +42%)(1 4 49%)(1 + 42?) + 64ayz + 42? + 4% + 42 — 6, (5.6)

and the velocity
v(x,t) = 0.005¢m (X, t). (5.7)

The results of the experiment are shown in Figs. 10 and 11. Some conclusions can be
drawn from the performance of these experiments. From Fig. 6, we can see that our
model and algorithm satisfy the mass conservation property. Different phase separation
experiments present the following conclusion. When we set ¢, = 0, which indicates
that the concentrations of the two blocks are approximately equal, the surface shows
a process of striped changes. When ¢, = 0.3 or 0.4, it indicates that the two block
concentrations have a large difference, and the surface will appear to be a point-shaped
evolution process.

(a)t=0.2 b t=1

Figure 10: Spinodal decomposition with $=0.
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In addition, we test on a rabbit-shaped surface that our model and method are also
applicable to surfaces with large curvature. We chose the following parameters: S = 6,
e = 0.025, M = 0.005, a = 20000, At = 0.001, H = 0.0248. The velocity is

v(x,t) = 0.06[—y, z, 0] + 0.008sin(t)n(x, t). (5.8)

The result of spinodal decomposition can be seen in Fig. 12.

042 l
0
os 00
-
05 /// " ',.'C..‘ 036 o 04
‘..' . " -~ 7) ) 034 02 o5
L Npah '4/ 0z o o
. . t. v o
o N 02 02
1 - . oz 04 0.4
N O ) oz
’ a8 os
e A= oas
NN s - o 8
05\ 05 ‘ Kl 4
(@At=02 bdt=1
Figure 11: Spinodal decomposition with ¢=0.3.
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Figure 12: Spinodal decomposition on surfaces with large curvature. (a)-(c) Spinodal decomposition with
¢=0. (d)-(f) Spinodal decomposition with ¢=0.3.

6. Conclusion

In this work, we explore the CH phase-field model of diblock copolymers on evolv-
ing surfaces. The main work is to establish the CH model of diblock copolymers on
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evolving surfaces and to design an efficient numerical algorithm for the model. The
mass conservation property of the proposed model on evolving surfaces is preserved,
as well as briefly proved. To achieve a numerical method that is linear, highly accu-
rate, and stable, the stabilized semi-implicit approach is incorporated into the ESFEM.
Theoretically, we analyze the first- and second-order stability results of the numerical
method. Extensive numerical experiments explore the performance of CH model of di-
block copolymers on evolving surfaces. We test the convergence of the model, evaluate
the stability of the SSI scheme, demonstrate the mass conservation property, and show
the spinodal decomposition process. In future research, we intend to conduct a deeper
exploration of the error analysis related to our proposed numerical method. In ad-
dition, we also consider extending the CH model of diblock copolymers on evolving
surfaces to N-component systems by coupling N equations.
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