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Abstract. In this paper, we propose and analyze a second order accurate (in time)
mass lumped mixed finite element numerical scheme for the liquid thin film coars-
ening model with a singular Leonard-Jones energy potential. The backward dif-
ferentiation formula (BDF) stencil is applied in the temporal discretization, and
a convex-concave decomposition is derived, so that the concave part corresponds
to a quadratic energy. In turn, the Leonard-Jones potential term is treated implicitly
and the concave part is approximated by a second order Adams-Bashforth explicit
extrapolation. An artificial Douglas-Dupont regularization term is added to ensure
the energy stability. Furthermore, we provide a theoretical justification that this nu-
merical algorithm has a unique solution, such that the positivity property is always
preserved for the phase variable at a point-wise level, so that a singularity is avoided
in the scheme. In fact, the singular nature of the Leonard-Jones potential term
around the value of 0 and the mass lumped FEM approach play an essential role in
the positivity-preserving property in the discrete level. In addition, an optimal rate
convergence estimate in the ¢>°(0,7; H, ') N ¢2(0,T; H}) norm is presented. Finally,
two numerical experiments are carried out to verify the theoretical properties.
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1. Introduction

Certain liquids on a solid, chemo-attractive substrate spontaneously form a droplet
structure connected by a very thin precursor (or wetting) layer. After the droplets ap-
pear, coarsening will occur, whereby smaller droplets will shrink and larger droplets
will grow. The coarsening behavior, especially the rate of coarsening, of droplets has
been of great scientific interest [38]. The average droplet size increases with the de-
crease of the number of droplets and the increase of the characteristic distance. The
droplet coarsening model with a singular Lennard-Jones energy potential involved
mainly describes the coarsening phenomenon of droplets. The related content of liquid
thin film coarsening phenomenon and some numerical simulation results can be found
in [7,8,14,20, 24,30].

Under the assumption that the liquid film does not evaporates, lubrication theory
leads to a single equation for the height function, ¢ = ¢(x,t) > 0, of a time-dependent
film [20], in the form of an H~! gradient flow
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Here F is the free energy of the film/substrate system and is given by
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where ¢ : 2 — R is a periodic height function, ¢ > 0 is the surface diffusion coefficient,

and
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is the well-known Lennard-Jones-type potential [12]. The H~! gradient flow asso-
ciated with the given free energy functional (1.1) with constant mobility M(¢) = 1
(non-constant mobility case could be handled in a similar way) is
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Obviously, this problem is mass conservation. Due to the gradient structure, the follow-
ing energy dissipation law is formally available:

iF(¢(t)) =— /Q |Vu)? dx < 0.

dt
In addition, from the mathematical expression, the structure of the potential function
requires that the phase variable has to maintain a fixed sign, that is, being either posi-
tive or negative, to avoid a singularity. A positivity-preserving structure is required for
the numerical scheme and for physical reality [38]. For simplicity of presentation, we
assume periodic boundary conditions hold over the rectangular domain 2. Other types
of boundary conditions, such as homogeneous Neumann, can also be handled.



