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Abstract. In this paper, we propose and analyze a second order accurate (in time)
mass lumped mixed finite element numerical scheme for the liquid thin film coars-

ening model with a singular Leonard-Jones energy potential. The backward dif-

ferentiation formula (BDF) stencil is applied in the temporal discretization, and
a convex-concave decomposition is derived, so that the concave part corresponds

to a quadratic energy. In turn, the Leonard-Jones potential term is treated implicitly
and the concave part is approximated by a second order Adams-Bashforth explicit

extrapolation. An artificial Douglas-Dupont regularization term is added to ensure

the energy stability. Furthermore, we provide a theoretical justification that this nu-
merical algorithm has a unique solution, such that the positivity property is always

preserved for the phase variable at a point-wise level, so that a singularity is avoided

in the scheme. In fact, the singular nature of the Leonard-Jones potential term
around the value of 0 and the mass lumped FEM approach play an essential role in

the positivity-preserving property in the discrete level. In addition, an optimal rate
convergence estimate in the ℓ∞(0, T ;H−1

h
)∩ ℓ2(0, T ;H1

h
) norm is presented. Finally,

two numerical experiments are carried out to verify the theoretical properties.
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1. Introduction

Certain liquids on a solid, chemo-attractive substrate spontaneously form a droplet

structure connected by a very thin precursor (or wetting) layer. After the droplets ap-

pear, coarsening will occur, whereby smaller droplets will shrink and larger droplets

will grow. The coarsening behavior, especially the rate of coarsening, of droplets has

been of great scientific interest [38]. The average droplet size increases with the de-

crease of the number of droplets and the increase of the characteristic distance. The

droplet coarsening model with a singular Lennard-Jones energy potential involved

mainly describes the coarsening phenomenon of droplets. The related content of liquid

thin film coarsening phenomenon and some numerical simulation results can be found

in [7,8,14,20,24,30].

Under the assumption that the liquid film does not evaporates, lubrication theory

leads to a single equation for the height function, φ = φ(x, t) > 0, of a time-dependent

film [20], in the form of an H−1 gradient flow

∂tφ = ∇ ·
(

M(φ)∇δφF
)

.

Here F is the free energy of the film/substrate system and is given by

F (φ) =

∫

Ω

(

U(φ) +
ε2

2
|∇φ|2

)

dx, (1.1)

where φ : Ω → R is a periodic height function, ε > 0 is the surface diffusion coefficient,

and

U(φ) =
1

3
φ−8 −

4

3
φ−2

is the well-known Lennard-Jones-type potential [12]. The H−1 gradient flow asso-

ciated with the given free energy functional (1.1) with constant mobility M(φ) ≡ 1
(non-constant mobility case could be handled in a similar way) is

∂tφ = ∆µ, µ := δφF = −
8

3
(φ−9 − φ−3)− ε2∆φ. (1.2)

Obviously, this problem is mass conservation. Due to the gradient structure, the follow-

ing energy dissipation law is formally available:

d

dt
F
(

φ(t)
)

= −

∫

Ω
|∇µ|2 dx ≤ 0.

In addition, from the mathematical expression, the structure of the potential function

requires that the phase variable has to maintain a fixed sign, that is, being either posi-

tive or negative, to avoid a singularity. A positivity-preserving structure is required for

the numerical scheme and for physical reality [38]. For simplicity of presentation, we

assume periodic boundary conditions hold over the rectangular domain Ω. Other types

of boundary conditions, such as homogeneous Neumann, can also be handled.


