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Abstract. In this paper, we propose and analyze a second order accurate (in time)
mass lumped mixed finite element numerical scheme for the liquid thin film coars-
ening model with a singular Leonard-Jones energy potential. The backward dif-
ferentiation formula (BDF) stencil is applied in the temporal discretization, and
a convex-concave decomposition is derived, so that the concave part corresponds
to a quadratic energy. In turn, the Leonard-Jones potential term is treated implicitly
and the concave part is approximated by a second order Adams-Bashforth explicit
extrapolation. An artificial Douglas-Dupont regularization term is added to ensure
the energy stability. Furthermore, we provide a theoretical justification that this nu-
merical algorithm has a unique solution, such that the positivity property is always
preserved for the phase variable at a point-wise level, so that a singularity is avoided
in the scheme. In fact, the singular nature of the Leonard-Jones potential term
around the value of 0 and the mass lumped FEM approach play an essential role in
the positivity-preserving property in the discrete level. In addition, an optimal rate
convergence estimate in the ¢>°(0,7; H, ') N ¢2(0,T; H}) norm is presented. Finally,
two numerical experiments are carried out to verify the theoretical properties.

AMS subiject classifications: 60F10, 60J75, 62P10, 92C37

Key words: Liquid thin film model, second order accuracy, mass lumped mixed FEM, positivity

preserving, energy stability, optimal rate convergence analysis.

*Corresponding author. Email addresses: mgyuan@cupk.edu.cn (M. Yuan), lxdong@bnu.edu.cn

(L. Dong), jzhang@lut.edu.cn (J. Zhang)

http://www.global-sci.org/nmtma 127 ©2025 Global-Science Press



128 M. Yuan, L. Dong and J. Zhang

1. Introduction

Certain liquids on a solid, chemo-attractive substrate spontaneously form a droplet
structure connected by a very thin precursor (or wetting) layer. After the droplets ap-
pear, coarsening will occur, whereby smaller droplets will shrink and larger droplets
will grow. The coarsening behavior, especially the rate of coarsening, of droplets has
been of great scientific interest [38]. The average droplet size increases with the de-
crease of the number of droplets and the increase of the characteristic distance. The
droplet coarsening model with a singular Lennard-Jones energy potential involved
mainly describes the coarsening phenomenon of droplets. The related content of liquid
thin film coarsening phenomenon and some numerical simulation results can be found
in [7,8,14,20, 24,30].

Under the assumption that the liquid film does not evaporates, lubrication theory
leads to a single equation for the height function, ¢ = ¢(x,t) > 0, of a time-dependent
film [20], in the form of an H~! gradient flow

06 =V - (M(§) Vs F).

Here F is the free energy of the film/substrate system and is given by

Fo) = [ (u)+ S1vor) i .1

where ¢ : 2 — R is a periodic height function, ¢ > 0 is the surface diffusion coefficient,

and
1

4
Up) = §¢78 - §¢72

is the well-known Lennard-Jones-type potential [12]. The H~! gradient flow asso-
ciated with the given free energy functional (1.1) with constant mobility M(¢) = 1
(non-constant mobility case could be handled in a similar way) is

O = Ap, pi=05sF = —§(¢—9 — ¢ 3) — 2 Ao (1.2)

Obviously, this problem is mass conservation. Due to the gradient structure, the follow-
ing energy dissipation law is formally available:

iF(¢(t)) =— /Q |Vu)? dx < 0.

dt
In addition, from the mathematical expression, the structure of the potential function
requires that the phase variable has to maintain a fixed sign, that is, being either posi-
tive or negative, to avoid a singularity. A positivity-preserving structure is required for
the numerical scheme and for physical reality [38]. For simplicity of presentation, we
assume periodic boundary conditions hold over the rectangular domain 2. Other types
of boundary conditions, such as homogeneous Neumann, can also be handled.



Second Order Scheme for Droplet Liquid Film Model 129

There are various time discretization methods for gradient flows to ensure energy
stability. For example, convex splitting method proposed in [6], stabilization method
[31], exponential time differencing approach in [29], invariant energy quadratization
method proposed in [33], scalar auxiliary variable approach proposed in [15] and
Lagrange multiplier approaches. Recently, by introducing a supplementary variable
to reformulate the original problem into a constrained optimization problem, Hong
et al. [9] proposed a novel energy-stable scheme which satisfies the original energy
dissipation.

However, the positivity-preserving property of numerical solutions is very impor-
tant for gradient flows with singular energy functionals. Chen et al. [2] presented
a positivity-preserving theoretical framework for the convex splitting method. In de-
tail, it transforms numerical scheme into Euler-Lagrange equation of a convex discrete
functional, thereby transforming the computation of numerical scheme into the prob-
lem of finding the minimum value of a convex discrete functional. Then the positivity-
preserving property of the numerical solution can be obtained by utilizing the singu-
larity of the energy functional. In recent years, based on above framework for convex
splitting method, there are many works to analyze the positivity of numerical solutions
by finite difference method for gradient flows with singular energy potential. See the
related works for the MMC-TDGL equation [5], ternary MMC system [4], binary fluid-
surfactant system [23], Poisson-Nernst-Planck (PNP) system [17], and droplet liquid
film model [38], etc. Here, we would like to extend the theoretical framework of posi-
tivity preserving scheme to the fully discrete finite element scheme for a droplet liquid
film model. Based on the finite element approximations in space, Karthik et al. [13]
have adopted a robust staggered algorithm to solve a phase field fracture model. The
standard mixed FEM leads to a theoretical difficulty to justify the positivity-preserving
property because of the non-diagonal mass matrix. To overcome this subtle difficulty,
we apply a mass lumped FEM instead, which is a modification of standard FEM and
the diagonal elements are the row sums of the original mass matrix [26]. There are
also a few works using the mass lumped FEM to justify the positivity-preserving prop-
erty for gradient flows with logarithmic singularity potential [18,34]. At present, most
high-order schemes in temporal discretization have been constructed for polynomial
phase-field gradient flows without singularity, such as extrapolated Runge-Kutta with
scalar auxiliary variable (RK-SAV) method in time [1, 25, 27, 28], exponential scalar
auxiliary variable approaches with relaxation (RE-SAV) method [11,19] or the k-th
backward differentiation formula (BDFk) method [3,16].

In [22], the author proposed and analyzed a finite element approximation of the re-
laxed Cahn-Hilliard equation with singular single-well potential of Lennard-Jones type
and degenerate mobility that is energy stable and nonnegativity preserving. Recently,
Zhang et al. [36,37] analyzed two linear and efficiency schemes by using the (S)SAV
approach to solve the liquid thin film coarsening model. However, the SAV method
incorporates nonlinear energy functionals into the scalar auxiliary variable, making
it difficult to theoretically obtain the positivity-preserving property of numerical solu-
tion. Furthermore, the coarsening dynamics problem usually is a long time process.
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To improve the computational efficiency, some adaptive time stepping strategies has
also become a popular issue for a class of PDEs which is relatively more difficult than
the uniform temporal mesh in theoretical analysis. There are also some works on
the variable-steps BDF2 schemes combining SAV method [10, 11] or convex splitting
method [18]. Recently, comparing to the preconditional gradient descent method, Park
et al. [21] also proposed a preconditioned Nesterov’s accelerated gradient descentfast
solver for the phase field crystal and functionalized Cahn-Hilliard equations.

In this paper, we propose and analyze a second order accurate in time mass lumped
mixed finite element numerical scheme for a droplet liquid coarsening model for singu-
lar energy functional with negative powers, which is a fourth-order partial differential
system. Compared with the finite difference method, the finite element method has
more flexible mesh, so we consider the finite element method in the spatial discretiza-
tion. In more details, the BDF2 stencil is applied in the temporal discretization, and
a convex-concave decomposition is formulated so that the concave part corresponds
to a quadratic energy. The combined Leonard-Jones potential term is treated implic-
itly, and the concave part is approximated by a second order Adams-Bashforth explicit
extrapolation. An artificial Douglas-Dupont regularization term is added to ensure
the energy stability. Furthermore, the unique solvability and the positivity-preserving
property for the second order scheme is established, in which the singular nature of
the Leonard-Jones potential term around the value of 0 and the mass lumped approach
play an essential role in the positivity-preserving property. In addition, an optimal rate
convergence estimate in the ¢>(0,7; H; ') N ¢*(0,T; H}) norm is presented, in which
the convexity property of the nonlinear potential term and the surface diffusion term
play an important role.

The rest of the paper is organized as follows. In Section 2, the mass lumped method
and the fully discrete BDF2 scheme is proposed. In Section 3, the unique solvability and
positivity-preserving property for the proposed scheme is derived. Then the modified
energy dissipation laws will be obtained in Section 4. In Section 5, the optimal rate
convergence analysis is provided. The numerical simulation results are presented in
Section 6. Finally, some concluding remarks are given in Section 7.

2. Preliminary and the fully discrete numerical scheme

In this section, we present some definitions and lemmas which will be utilized next,
and the fully discrete scheme based on the mass lumped FEM for the droplet liquid thin
film coarsening equation is proposed.

2.1. The mass lumped finite element method

Let 73, be a shape-regular triangulation of (2, with mesh size h, denote k. the diame-
ter of each triangle e € 7, and /\. the area of e. Note that the element is shape regular,
we can assume that h2//\, is uniformly bounded by one constant C7 : h2/A. < Cr.
Based on the quasi-uniform triangulated mesh 7}, the finite element space is defined
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as
1
Sy = {?} S Hper
=span{x;|j=1,...,Np},

(Q) | v is piecewise linear on each e € T }

where x; € S is the j-th Lagrange nodal basis function, which has the property
Xj(Pi) = 62J Define
Spi= S N LE(9),
where
Li(Q) ={ve L*Q) | (v,1) =0}

is the function space with the zero mean in L?(12) .

The mass lumped FEM can simplify the computation for the inverse of mass matrix
and overcome the shortage of the standard FEM (2.2) that can not preserve the max-
imum principle for homogeneous parabolic equations. In more details, let P, ;, (k =
1,2, 3) be the three vertices of triangle. The generation of the mass lumped matrix can
be regarded as introducing the following quadrature formula:

Qn(f) =Y Qelf), VfeCE4R),
e€Th

where
AB
QU =521 (P = [ s
By the above quadrature formula, it is easy to derive Q(x;x%) = 0 for k # j, so that

Qh(X]Xk) = ]th(X?)’ J’k: 1,’Np
It is obvious that
1
Qn(x7) = Y_ Qe (x3) = garea(D;), Dj = supp(x;).
e€Th

We define an approximation of the canonical inner product on S, by

(V,mq = Qun(n), Vib,n € Sh. (2.1)

We define ||n|lq := /(n,n)q for any n € Sj,. This norm is observed to be equivalent to
the standard || - || .2 norm by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete
Laplacian operator and the discrete H~! norm. In fact, the primary difference is in the
integral definition.

Definition 2.1. The discrete Laplacian operator Ay : Sy, —>§h is defined as follows: For
any v, € S, Apv, €Sy, denote the unique solution to the problem

(Anvnx)g = = (Von, VX), VX € Sh.
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[} o
It is straightforward to show that by restricting the domain, Aj, :S,— S}, is invert-

ible, and for any vy, Ggh, we have
(V(=Ap) " vy, Vx) = (Uh,X)g» VX € Sh.

Definition 2.2. The discrete H ' norm || - | -1, is defined as follows:

lonll-1.@ =/ (vns (=20 T0n) g, Vo €5

2.2. The fully discrete numerical scheme

We recall a convex-concave decomposition of the energy (1.1). The detailed proof
of the following preliminary and lemma results could be found in the work [38].

Lemma 2.1. For = > 0, the function

1 4 4
f(.%') = 5.7]78 — 51'72 + 51401'2

9/2\3
Ay > A== =] .
0 =70 5(15)

As a result, we obtain the following decomposition of F'(¢):

is convex, provided that

wWin

F(¢) = Fe(9) — Fe(9),

where
_ L g 4, 5 4, 5 & 2 _ [ 4,
Fio) = [ (3075 307+ jA + FIVOP ) ax. ()= [ GAadtax
and
8 o .5 8 ) 8
9() = —§(¢ —¢ )+§A0¢7 dpFe = g(¢) —e"Ag, 5¢Fe:§Ao¢-

The mixed weak formulation of the droplet liquid film equation (1.2) is to find (¢, 1) €
L*(0,T; Hy,,.(Q)), with ¢, € L*(0,T; H,1.(R)), satisfying

per

(¢r,v) + (Vu, Vo) =0, Yo € H;ST(Q),
(2.2)

() = (566) = GA00r0 ) + (V6. Vu), Y € Hi ()

for almost every ¢t € [0, T].



Second Order Scheme for Droplet Liquid Film Model 133

Using the idea of the convex splitting and the mass lumped FEM, we consider the
following semi-implicit, fully discrete scheme: For n > 1, given ¢}, ¢~ e s, find
gb”“, ,uZ“ € Sy, such that

3 n+1 — 4 n—1
( < 2¢:h £ ’Uh> + (Vi Vo) =0, Yoy, € S,
Q
n+1 n+1 §A in+1 2 n+1 (2.3)
(kh wh) 9(op"7) — 5 A0y L wy | + (Ve V)
Q
+ AT( ((anrl - (bZ)vvwh)v VUJh I~ Sh,

where q&”“ = 20} — ngZ*l and A > 0 is a stabilization parameter to be determined.
The initialization step comes from the first-order convex splitting method and the mass
lumped FEM, as follows:

o — ) ¢0 1 _
- Up, + (Vuh,Vvh) = O, V?}h € Sh,
@ . (2.4)
(thwh) < ((bh) - §A0¢9L7wh> + 82 (V(ﬁ}w vwh) ) th € Sh-
Q
The initial data is chosen ¢ := Rj,¢", where the Ritz projection operator Ry, : H].(€)

— Sy, satisfying

(V(Rhu —u), Vx) =0, Vxe€S, (Rpu—u,l)=0.

3. Unique solvability analysis

In this section, the unique existence and positivity-preserving property of the so-
lution for the second order fully discrete numerical scheme is verified. If the solution
exists, they will hold the mass conservative property at a discrete level

S =107 (80, 1) g = Gh = = == |2 (¢f, 1)g, VneN.

The following lemmas are needed to prove the desired result, the detailed proof could
be found in the work [35].

[¢]
Lemma 3.1. Given uy, uy € Sp, wWith ug—u; €Sp,. Suppose that ||u]le < 1, ||uz|lco < M.
Then, we have the following estimate:

I(=an)"" (w2 — )], < C,

where C7 > 0 depends only upon M and 2. In particular, Cy is independent of the mesh
spacing h .
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Lemma 3.2. For any ¢ € Sy, and any piecewise linear Lagrange nodal basis element x ;,

we have
Z¢ »)

(Vo,Vx;) < Z

e€D;

on T, with mesh size he.

Theorem 3.1. Assume that .M((b) =1 leen qﬁh € Sy, with 6y < qjh <My, k=n,n—1,
for some 6o > 0, My, > 0, and ¢} = ¢}~' = ¢Y, there exists a unique solution gb”“ €S,

to (2.3), with ¢} — g7 € S, and ¢pt! > 0 at a point-wise level.

Proof. The numerical scheme is a minimizer of the following discrete energy func-
tional:
2

3 1 1
J(@) = 5= ||56 = 20k + 5 +§<¢*8—4¢*2,1)Q

71,Q
A
a ~EL V613 - (o, ArVeR) — S Ao(d T d)e,

4
+ 5 40(¢% g +
over an admissible set

Ah—{¢€Sh‘0<¢<Mh7(¢ ¢h7 _O}

where M), = 3¢)|Q|/area(D), D := mini<;<n, [supp(x;)|. Details, we have

Q ‘(¢h, ’Q‘ Z quh e.k)

e€Ty, k=1

o =

1 .
> 3‘9’ area(D;)on(P;), j=1,2,...,Np,
this means that ¢ < M. To facilitate the analysis below and use Lemma 3.1, we
transform the minimization problem into an equivalent one. Consider the functional

Fle) =T (o + )

1 3 70 n 1 n—1 2
=37 5(@‘*‘%)—2%4‘5%

717Q
1 —0~_ —0~—
+3 ()™ =4l + )% 1),
4 - g2 —|—AT
+§Ao ((@+¢2)271)Q+ IVell3

(V(SD + o0, ATV%) - _AO (¢n+1, + ﬁg)Q,

where ¢ lies in the following admissible set:

}ih::{gpesh | —$2<¢§Mh—€52}-
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Observe that F is a strictly convex functional on an bounded, compact and convex set
Ay. In order to show that the minimizer can not reach the left boundary of A, we
introduce the following set with a sufficiently small 4, for § € (0,1/2):

z‘ih,aiZ{sDGSh |5—¢32§80§Mh—¢_52}-

Since /Olh,g is a bounded, compact, and convex set in the subspace %h, there exists a min-
imizer of F over flM. The key point of the positivity analysis is that such a minimizer
could not occur on the left boundary, when ¢ is sufficiently small.

To get a contradiction, assume that the minimizer of F, call it ¢* occurs at the left
boundary of Ay, 5. There is at least one grid Py, = (io, jo) such that ¢*|5, = 6—¢). Thus,
the numerical function ¢* has a global minimum at dy. Suppose that Pz, = (i1, 1) is
a grid point at which ¢* achieves its maximum. By the fact that * = 0, it is obvious

— o [}
that 0 < p*|5, < M), — ¢2. Since F is smooth over Ay, 5, for all ¢ €5}, the directional
derivative becomes

ds F (" + 519)]s=0 = % <<—Ah)_1 (g

(0 + ) - 205 + 50171 ) 0
Q
2 (et + B (0 + )+ Aol + ). 0)

T3

+ (&% + A7) (Vo*, V) — (ATV ¢}, Vi)
8 5

30

o (B w) g =D T 3.1)

=1

For simplicity, we write ¢* := ¢* + ¢. Let us choose ¢ €5}, as

area(Dg,)
area(Dg, ) Xa

where D, Dg, are the compact support of the basis functions x4,, x4, , respectively.
Next we will estimate each term on the right-hand side of (3.1). For Iy, using the
definition of (-, -)g and Lemma 3.1, we have

=2 (Can (G- 20+ gor) ,w)
1 A g
== 5 (A < — 207 + <z>" 1) W(Pej)
e€Th j=1
:area < <¢_2¢h+ g 1>‘a0
~-an) (360 - 20+ 501 ) )

40Y. (3.2)

1/1:)(&0—

area(Dg,)
T

IN
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For Iy, using ¢*|g, = 0, ¢*|a, > &2 and the monotonicity of function g(¢), we have
L= (=(6")° + (#") 7 + A", ¥)

(=" + ()7 + Aog*) ¥(Fe,j)

sy
(_Dm
s S
<
—

I
wlow Wl Wl
oo‘l>
9]
NE

—

-

ol

S .
—

o
=

2 (=) H (@) 4 Aod o — (—(¢) 77+ (07) 77 + Aog) |, )
D

oo
&
=
D
s
—~
=)
S
SN—

w
—~

58 ()70 — () + AdE - ). (33)

Ne)

For I3, we have

I3 = (2 + A7) (V¢*, V)

Dg,)
(2 N ., _ area(Dg, N V<o .
(& + A7) (V6" Vxa) = Lo 52 (V0 Vo) ) <0 (34)
For I, using the Lemma 3.2, we have
Iy = —A1 (Vop, V)
area(Dg, )

= —AT <(V¢Z, VX&O) —

R area(Dg, ) R
< A E : e n 3 do e E : n P, ;
- T( 2Aez¢h( ) area(Dg, ) 2\, %h(Fe.5)
e€Dg, Jj=1 e€Dg, j=1
h? area(Dg, ) h?
<A ©-3M, 20 °-3M,
=47 ( Z 24 My area(Dg, ) 2/ My
eEDd*O eEDal
3My ATCr area(Dg, )
1l ‘ Le
- 2 ( Z | area(Dg, ) |
eED&O eEDal
3SMyAT ~
_ ]21 TCT, (3.5)

where
~ area(Dg,)
Cr:=0C 1 ——0 e | -
T T ( Z e+ area(Dg, ) Z e)
EED&’O eEDal

For the numerical solution qﬁﬁ, k = n,n — 1 at the previous time steps, the a-priori
assumption §y < ||¢F || < M), yields

8o — My, < Ofla, — Bfila, < My, — do,
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then, we have
3(60 — Mp) < pt |ay — Oy < 3(Mj — o). (3.6)
For I5, we have

8 in+1
Is = —§A0 (¢h+ a¢)Q
3
8 A, n
=340 D> D (67) (Pey)
e€Th Jj=1
8 area(Dg,) ;+p “n
=~ Ado———— (A ao — 5 an)
3 3
8
< §A0 area(Dg, ) (M}, — o)

< gAO area(Dg, ) Mp, 3.7)

in which the next-to-last comes from the a priori assumption (3.6) at the previous time
steps.
Substituting (3.2)-(3.7) into (3.1), we derive that

doF(¢" + 59)|s=0 < area(Dg,) (g (=677 4072+ (@) 7" = (6h) 7" + A — 6))
4C1  8Ap > n SMpAT ~

= garea(D&O) (—6_9 + 63+ A5+ ),

where 9
- - o 3¢, 2TMpATCr
_ _ — A+ =L 4 340M), + =TT
r1 = (o) (o) b+ or + 340 M + 16 area(Dg, )

Notice that r is a constant depending on ¢!, area(D,) and 7. For any fixed 7, we can
choose § € (0, 1/2) sufficiently small such that

6 V463 + A6+ <O. (3.8)
This in turn shows that, provided ¢ satisfies (3.8) such that
dsF(¢* + s1)|s=0 < 0.

Then the desired contradiction is obtained since the directional derivative is always
nonnegative at the minimum point. This contradicts the assumption that F has a min-
imum at p*. Therefore, the global minimum of F over fihﬁ could only possibly occur
at interior point. We conclude that there must be a solution ¢ € A; that minimizers
J over Ap, which is equivalent to the numerical solution of (2.3). The existence of
the numerical solution is established. In addition, since 7 is a strictly convex function
over Aj, the uniqueness analysis for this numerical solution is straightforward. Using
similar argument, the positivity-preserving property is established for the initialization
step (2.4), the details are left to the interested readers. O
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4. Energy dissipation law

In the following theorem, we could prove that a modified energy stability is avail-

able for the second order BDF scheme (2.3), provided that A > (4/ 9)Ag.

Theorem 4.1. The full discrete numerical scheme (2.3) preserves the modified energy

dissipation law
_ _ B ) 4
Eh (¢Z+17 (bZ) < Eh (¢Za ¢Z 1) ) lf A > §A3

with

En (631 01) = Bn (04"7) + L lIoh ™ = dhllZiq + 540lloh™ — a7lld,

where
(@) = 1675, Do + SVl - 2672 1)
h 3\ e 3\ e
Proof. In (2.3), by choosing
op = (=Ap) " ()T =), wn = p T — 9,

we could derive the following expression:

(WH e Tk

- (At - ¢z>)
Q

( (¢n+1) ¢n+1 d’Z)Q _ _AO (¢n+1 ¢Z+1 _ ¢Z)Q

+e? (Vo v(gpt! — <z>h))+AT||V<¢Z“—¢Z>H2=0-

For the first term of the left-hand side of (4.3), we have

< ¢n+1 4¢Z+¢271

2T

(=) et - ¢Z)>
Q
> i“¢n+1 - (anQ - iH(bn . (bn—lH2
= 47 h hil—1,Q AT h h —-1,Q
For the second term of the left-hand side of (4.3), we have
(9(en™h) bt = i),
( (p™) ™ = (e ) + Ao¢"+17 opt! — ‘752)
Q
1
5 (@) = (™) 72 + 440 (0772 1)
Y (((bh) ((bh) 2 + 4A0(¢2)27 1)Q )

4.1)

(4.2)

(4.3)

4.4)

(4.5)
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in which the last step comes from the convexity of the function
s, 2
y=3 (z dz™? + 4A7) .
For the third term of the left-hand side of (4.3), we have

_ _AO (¢n+1,¢n+1 _ ¢Z>Q
= ——Ao (201 — op "t op Tt — %h)o

4A0 . . 4A0
> —— (llop 113 — llonlla) —

—— ok — &h 1% (4.6)
For the fourth term of the left-hand side of (4.3), we have
& (Vo V(o - ap))
= § (IV o2 — IV + [V (6t — o)[I?) - 4.7)

Meanwhile, an application of Cauchy inequality yields

1
~ott = BRI + ATIV@T - oDIP = 243 [l6p T — GR1E. (48)

A combination of (4.4)-(4.8) yields

Ep (64"") = Bn (6h) + - (W“ — P20 — 67 — 7 P 0)
4A
=2 (lgntt — ¢h||Q lor — ¢ t2)
< (ng - 24%) 105 - 6hlfy < .

provided that A > (4/9) A2. Therefore, by denoting a modified energy as given by (4.2),
we get the energy estimate (4.1). This completes the proof of Theorem 4.1. O

5. Optimal rate convergence analysis in (>(0,T; H, ') N (*(0,T; H})

Next, we will provide a convergence analysis for the proposed numerical scheme
(2.3)-(2. 4) in the ¢°(0,T; H, ') N ¢2(0,T; H}) norm. We denote the exact solution as
¢" = ¢(x,t,) at t = t,. As usual, a regularity assumption has to be made in the error
analysis. The following estimates hold for Ritz projection:

HRh%DHLp < Callll1p, V1<p<oo,

(5.1)
lp = Rugllo, + [l = Ruglly, < Coh™H|@llgr1p, V1< p < oo
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Suppose that ¢ € L>°(0,T; WP). Combining (5.1) and the Sobolev imbedding theo-
rem W1P(Q) — L>(Q), for2 < p < co (d =2),3 < p < 0o (d = 3), there are constants
Cs, Cy > 0 such that

l6"lo < C 16", < Cs,

" " " (5.2)
[1Br" |l oo < C IR |, < CCll9" ]y, < Ca.

By (¢, 1) we denote the exact solution to the weak formulation (2.2). We say that
the solution pair belongs to regularity of class C if and only if

¢ € W>™(0,T; L2, () N W (0,T; Hz.,.(Q)) N L? (0, T; HZ,. ()

per per per

peL?(0,T;Hp () .

The following lemma is the similar version of [35, Lemma 4.1] where the Ritz projec-
tion solution only has the upper bound, here it has the lower and upper bound.

Lemma 5.1. If ¢ € H?(Q), where Q € R% and § < ||¢]|cc < M, § > 0, then there exists
0 < hg < 1 such that for any h < hy,

1)
< ||Rno||p> < M + 3 (5.3)

~ | s

Lemma 5.2 ([26]). Let rp(v,w
Then we have

= (v,w) — (v,w)q denote the quadrature errorin (2.1).

[k (1, x)] < CsR*| VY| - [V, Vb, x € Sh.

Lemma 5.3 ([35]). Suppose g(-) € W2*(R) and r1(g(-),-) = (9(-),-) — (9(:), ), then
we have

l5n(9(1), )1 < Csh? (V112 - Ixll + IVl 19X 5 Y, x € Sh,

where Cs = Cmax{||¢g” ||, ||¢'||L} is independent of h.

Lemma 5.4 ([32]). For a fixed T = 7 - N is a positive integer, and T > 0, assume that
{a"}N_,, {"}N_, and {¢"}N-! are all non-negative sequences, with 73"t ¢* < ¢,
where C7 > 0 is independent of 7 and N, but possibly dependent on T. Iffor all 7 > 0,
there is some Cg > 0, which is independent of 7 and N, such that

N N—-1
aN—{—TZb” <Cg+rT Z a™c"
n=1 n=1

then

N-1
a —|—7'Zb" C’g—i—ﬂzc exp< c”) Cg+TQC)6Xp(C7).

n=1
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Before proceeding into the convergence analysis, we introduce a new norm. Let {2
be an arbitrary bounded domain and p = [u,v]T € [L?*(2)]?. We define ||- |, to be
a weighted inner product

1
|
2

Since G is symmetric positive definite, the norm is well-defined. Moreover,

L Lo 0 0
-1 = -1 2 0 3
5 2

By the positive semi-definiteness of G;, we immediately have

_ _ 1
[Pl = (9. (G1 +Go)(~80) ") > (0, Go(~A1) 'p) g = 5 010
In addition, for any v; € L?(2),i = 0,1, 2, the following equality is valid:

2
1 5 5 [va — 2v1 4+ vollZ4 g
=5 (P2l = lIpal2) + .

3 1
(-1)2 — 2v1 + S, (—Ah)lv2>
2 2 0
with py = [v, v1]7, p2 = [v1, v2]”.
Theorem 5.1. Suppose that the exact solution pair (¢, u) is the regularity class C for the
fixed time T' > 0. Let ¢} be the solution at t = t,, to the fully discrete numerical scheme
(2.3)-(2.4), for1 <n < N, with N - 7 = T, provided that T and h are sufficiently small,
then we have the error estimate

NI

l¢" ™ = én e + (2 DIV - ¢’:f1>uﬂ> < O(T.e)(r* + 1),

k=0
for some constant C(T,e) > 0 that is independent of T and h.

Proof. First we define

+1 _ yntl +1 +1 _ n+l +1 +1 _ +1 +1
gotl = gl gl ikl = gt Ry gl gt = Ry gt gt
n+l _  n+l n+1 n+l _  ntl n+1 n+1l __ n+1 n+1
g =Ry py = = Ryt o = Rt —

Obviously, 71 = pntt +ag+1, gttt = pitl 4071, Similar to Chapter 15 of Thomée’s
classical book [26], by careful calculation, the following error evolutionary equation
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could be derived:

(0-03*  on) o + (Brpg ™ vn) + (Voptt, Von)
= — (RY™,vp) — s (6:Rpo™ L vp)

(ot wn) , + (ppth wr) + s (Rap”™ ™ wp)

Q
= (9(¢") = g(Rpo™* 1), wn) + (9(Rpe™) — gl ZH),wh)Q (5.4)
8A 8A
+hp ( (Rh¢n+1)7wh) _ To(pqul’wh) 30 (Tn+1 wh)Q
84 8A
30 (RhRn+1 wh)Q 30/€h (Rh¢n+1 wh)

+e2 (Vo ™, Vun) + 7 (VI3 V) + 7 (Ry T wy,)

where
3vn+1 — 4™ + Unfl
nt+l ._ 2T

)

Rn+1 -9 ¢n+1 7_(bn—i—l

20" — n—1 >1
R;H—l — (bn—f—l o (g ¢ , N : )
¢ I n= 07

(5.5)

Rn+1 — AA (¢n+1 - (bn) , N Z 17
3 0, n=0,

Taking wy, = Apvy, in (5.4), we have

(5TUZ+1, Uh)Q —¢? (VJZJFI, VAhvh) -7 (VT”H, VAhvh)
= — (R vy) — ki (8, Rag" T, vp) — (&PZH on) + (9(¢") — g(Rre™), Apuy,)

Ag
+ (g(Rno™™) — g(op™™), Ahvh)Q + &1, (9(Rpo™™), Apop,) — 83 (P¢+1 Apvp)

8A 8A 8A
30 (T"le Ahvh)Q >0 (RhR" Ahvh)Q — ?Olih (RhQS"Jrl, Ahvh)

+7 (RE, Apvn) — (o aAhUh) — ki (Rpp™*t, Apop) - (5.6)
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In turn, taking v), = (—Ah)_lag“, we write Eq. (5.6) as follows:

(6-05 ™ (=An) Tty ™) o + IV TP 4+ T (VT Vo)
= —(RY™, (=an) ol = k(8- R (= AR) ol ™) — (605 (—AR) ol ™)

— (9(¢™") = g(Rne" ™), 05™1) = (9B ™) — g(op ™), 057

8A 8A
n+1 n+1 0/ n+l n+1 0 n+1 n+1
— ki (g(Rpo" ), 0y )+T(P¢> oy + 5 3 (T 05 )
8Ao (R Rn+1 n+1) i %ﬁh (Rhﬁbnﬂ n+1) (Rngl’ UZH)
n+1 n+1 1 n+1
+ (py, y 0, ) + Kn (Rh,u Z Ql = . (57)
For the first term of left-hand side of (5.7), we have
(57_0(7;-1—1’ (_Ah)flo_;-i-l)Q
1
E(Ilp"“llé —Ip"lg) + —HU"+1 —200 + 0y 2o n21,
)1
(b2~ 193121,6) + 5-llof — oI n=0,
where pFt! = (a(’;,akH)T.
For the third term of left-hand side of (5.7), we have
T(VTQ"'H, VU;H)
1
AT(V(O‘;H_l - Jg),VUZH) > §AT(HVUZ+1H2 - ||Vag||2), n>1,
0, n =0,

in which the last step comes from
2(a — b)a = a® — b* + (a — b)?,

and A = 0 used for n = 0.
A combination of (5.7) reveals that, the right-hand side of (5.7) is bounded from
below

1 1
;(HP”HH% —Ip"lE) + §AT(HVUZ+1H2 —IVazI?)
Q> +EVoL P, n>1, (5.8)

1
b2 g+ IV n=0,

in which a =0.
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For Q1, we have

Q= _(R111+1’ (_Ah)—langl)

= —(V(=2) 'R, V(=Ap) ot
IV(=A) R - [V (=An) ol
= | RV g1 - llo3 -1

< CIRT 2 - llog -1

IN

1
2 RIFG + lopt IR g 2 1,
< N (5.9
20°7| Bl + g-llog 2 g0 =0,

in which the first step comes from the integral by parts formula, the second step is based
on the Holder inequality, and the fourth step is based on the fact that || f|| -1 < C||f||12-
Similarly, for @3, we have

Q3 = Cllorpg Iz - llogtll-1.0
< CO21?)|6:6" [z - o l-1.0

1
< 202G 5,8 + o2 (5.10)

in which the next-to-last step is based on the Ritz projection estimate (5.1).
For (O, we have

— K, (('57_Rh¢n+17 (_Ah)flo,g—kl)

< Csh2|Vo- Rpg™ | - [V (=Ap) ol
= C5h°|| Vo Rud™ | - o5 |10
< CoCsh? (Vo™ - ot |10

1
< 2(Ca05*)*[V:6" P + Zllop ™ 12 (5.11)

in which the first step is based on the Lemma 5.2, the second step comes from the
definition of | - ||-1,¢ and the third step comes from the Ritz projection estimate (5.1).
Similarly, for @19, we have

A
83—0/% (Rpo™, 0;“)
ACZh! (849

3
40202 <8A0
<

2 2
nt+12 4 & n+1)|2
55 (B8] Ivmiersip + Svop

2 2
g
3 ) I9e P + IV, (5.12)
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Similarly, for 013, we have

(Rh,u +1 n+1)_402205h4

2
N VT2 + 6\|vag+1\|2. (5.13)

Suppose that § < ¢"*!. Based on the Lemma 5.1, we have 6/2 < || R,¢" || 1.
For ()4, we have

— (9(¢™") — g(Rug™), 05 )

= _( ’()\n—I—l) ngl’ ngl)

<N o - 22 -
< C CHPZH”B : HVU;LH”B
CsCh g2
< 2O gtz + vy s, (514)

in which A\"*! is between ¢"*! and R}, ¢""!, the third step is based on Lemma 5.1 and
Poincaré inequality, and the last step comes from the Ritz projection estimate (5.1).
For ()5, based on the monotonicity of function g(¢), we have

—(9(Rng™™) = gl ™). 05"1) , < 0. (5.15)
For g, the following bounds could be derived:

— ki (g(Rng™ ), 0 t)
< Cgh? (\IVRh¢"+1\|L4 o3+ IVRag™ | - \|VUZ+1H>
< CC3C6h* V" [T - IVt + CaCeh? (Vo™ - [ Vo |

(00206112) 8(CoCsh?)?
2

2 vt +

2
n € n
[V 2+ IV 516)

in which the first step comes from the Lemma 5.3, the second step is based on the
Poincare’s inequality and the Ritz projection estimate (5.1).
For ()7, we have

840
3

8A 8A,C
(5ot < =5l - - Vo < =5

5oy — e Vgl
8AOC’

Coh?||¢™ g2 - HVUZHH
8A4,CC 2
= <%) B8 e + SV, (5.17)

in which the second step comes from || f||z-1 < C||f]|;2 and the third step comes from
the Ritz projection estimate (5.1).
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Similarly, for 12, we have

n+1 n+1

(oo ™) <Nt g1 IVop™
4C2C3ht £2
< =l e + 5l VRt (5.18)

For (Qg, we have

84 (Tp+, gt 8Ap

3 1 % )Q:T(v(_Ah)flTlnﬂ’VJZH)

8A0 _
e SO
8A0
e P
840
< (7) A e e L
840\ 2 _
(%2) Zlogag+3193 12 0)
82
<9 Vet nz1, (519
84, e2
() 21ttt g+ S n=0

in which the first and the third step comes from the definition of (-, -)¢ inner product
and [| - || -1,0-
For Q9, we have

8Ag ntl ntl 8A0 ntl 1 _nt1
— (a5 oy ™) o = == (VRWRS T, V(=4p) "oy ™)
8A0 n n
< ZOVRLRY 2 - IV (~An) o 2
8A n n
= 5 IVERBRS 12 - o 10
8A002 . N
< VRS g2 - H%HH—LQ
8A002 n n
2(—3 ) IVRE s + Bl g 021
- 8A0Co 1 (520
0“2
2(35C) ort Lol g, n=0,

in which the first step comes from the definition of discrete Laplacian operator and the
fourth step comes from the Ritz projection estimate (5.1).
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For Q11, we have
(R0 = —AT(A@ - ¢),05")
= AT(V(¢"+1 —9"), VUZH)
< A7V (@™t = o) - Vot
< (AT) [Vt = m)? + %IVJQ“”Z’ n=b e
(), n=0.

Substituting above estimates (5.9)-(5.21) into the left-hand side of (5.7), we have, for
n>1,

840C5\?
Q < 2C?|| RT3 4 2C2C3h*Y |60 (|72 + 2 ( g 2) IV RS2
. 8(CC2Csh? . 8(CoCeh2)? _
4 2CoCsh2)2 (| V8, 6™ + %IIW H, MIIW 2
AC3C2h* (840\° o AC3C2nt AT o n
1 JEGI (S00) ywgrsnp + 2w 2 o - gy
8A40CCo\> 4 m 4C2C3204
2 (B207C) it + A et
8AO n— CgCh n
+(30) 2 6loaiag + 31 1\\21Q>+%H¢ 2,
3¢? ntly2 | n+12
+ = IVog ™" + Ha 121 (5.22)
For n = 0, a similar inequahty could be derived
A 2
Q < 2C*7||R}||5 +2C2C3h 6,0 |32 + 2 <8T002> cr?
8(CC2Csh 8(CoCsh?)?
+2(CsCo? V8,01 2+ SO s,y ST g2
4C2C2H* 84\ AC2C2R4
# JRGIE (B0 watp + 22w
€ 3 g2
8A49CCy\? 4C2C2n4
2 (A7) o e + S
19
2(CsCh2)? 3¢2 N 3
+ 7H¢ 372 + —HVUéH2 Ha o + gHUéHQ_l,Q- (5.23)
By the Cauchy-Schwarz inequality, we have the followmg estimate:
tn+1
327'3/ s *dt = CT, n>1,
IRTHY? < fn=1
.

t1 T2
7 [ NowdlPat < Follwaeony = O m=o.
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An analogous estimate is available for the second remainder term

tn+1
o 3273/ |Owel2dt = Crt, n>1,
IRy < fn=1

t1
T/ 18:¢l17dt < 72| 6llwr.0 (0,752 = CT°, n =0,
0

tn+1
3273/ 0.V |*dt = C74, n>1,
IVREFY? < fn-t1

t1
T/o 18:V |2 dt < 72| bllwroe o, ) = CT25 0= 0.

For the third remainder term, we obtain the estimate

tn+1
2dt < 72 (0.7 =C7%, n>1
Hv(¢n+1 _ ¢n)||2 < T\/tn HatV(bH dt >T H(bHVV17 (O,T,Héer(ﬂ)) Cr , Nzl
0, n = 0.

Combining (5.8) and (5.22), for n > 1, we have

L 1 £2
E(HPTL—HHZG - HanQG) + §AT(||VJZ+1||2 — ||VO'$H2) + ZHVUZJAHZ

8A40Co\”
< 20 R + 20715, e+ 2 (02 ) o
+ (0o V87 24 LEETIT iy, o SOCR) g
ARG (S0) gt AEGH gy AR et e
R
+(30) 2 @lopiag + 315 aa) + S5 g, (529

in which .
Ip'lIE = §H0éll2_1,Q, Ip" G = 2IIU"HII2

Combining (5.8) and (5.23), for n = 0, a similar inequality could be derived

—H ¢||21Q+ ||v%\|2
< 2CQTHR%H2 + 20202h4||6T¢1H?{2

2
) (%) Crd + 2(CoC5h2) V5,61
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4C302n4
+75HV

8(C2C 40302 8A
+( S o 3°>2) h| Vo'

8A,CC,\?  2(CsC)?
+<2( o) 4 2O >h4||¢1u§,2

N 402(}2 Rt

8(CC5Csh
e+ (OETRY o,

[ H%II%Q (5.25)

Equivalently, multiplying by 207 /3 on both sides of (5.25), we have
5 52T 51
b2 g+ SNV < o2 g + R, (5.26)

in which

40 40 407 (8ApCo\”
S ot + 2 crcq 6 e+ 2T (222 ) o

160(CC2Csh?)*r
)T 196144

160(C5Cgh 80C2C2hAT /8402
4 WG 512 . 80C2C5 Zak

RO

40
—-(CaCsh?)||V 66 +

3e2 3e2 3

80C2C2h4r 407 [/ 8ACCy\ 2
%HV!HHQ +—5 (T) hY @[3

80C2C2h*r 40(CsCh?)?T |
e e L 2

< Ce)(r* + nh).

Summing (5.24) from k£ = 1 to k = n+ 1, multiplying by 27 on both sides, we arrive
at the following estimate:

o k
SIoT210 — llobIPaq + A (IVoR P — Vol ) an e

84y n - n
_< 3 ) 2 5 > (6lloblI? 1 + 3lloh 1”%1,Q)+TZ“U§>+1“%1,Q+ZRk’ (5.27)

k=1 k=1 k=1

in which

840Co\”
RE = OB+ CH OB 5,0 [+ 4 (S92 ) oo mg

16(CC2Csh?)%r
52

+ 4(CyCsh?) 27 | Vo, * |2 + V|74
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6(CyCsh?)2r 8C2C2hAT [8Ap\>
+ g—nw’f“H? = 5 ) Ve
8C3C2h T 4A 73
+ =V V(6 - N
8A4yCCy 8C2C3hAr 4(CsCh?)?r
=) h4f||¢’“+1||%p 4 BT gy, o WETRT e,

< C(T,e)(r* + h%),

and C(T,¢) is independent of 7 and h.
Combining (5.26) and (5.27), we have

5elr
H o5 g + =5 IVesl® + AP (IVog 2 = [Vog|P?) ZHV oI
8A0 24T "~ k— k
< (T) S (Bt g+ 310 g) + 73 1A P g
k=1 k=1
- 5T
k 12
+ZR +7HU¢H71,Q- (5.28)

Let 7 < min{7¢2/6A,1/4}, we have

Lo g2 2T 112
ZH% Hfl,Q“'TZHVU(p l

A2
g<256 0 4 7) Zn%n 1Q+ZR’“ (5.29)

An application of the discrete Gronwall 1nequa11ty of Lemma 5.4 leads to the desired
convergence result

n
lop 121 +28%7 ) [VolH|I? < O(Tue)(r* + hY).
k=0
The proof is complete. O

6. Numerical results

In this section, we provide two numerical examples to illustrate the presented
scheme satisfies the properties of mass conservation, energy dissipation and positivity-
preserving. The first example demonstrates the convergence order of the proposed
scheme (2.3). The second example aims to test the properties of the numerical solu-
tion and demonstrates the coarsening phenomenon for the droplet liquid film model.
We consistently apply periodic boundary conditions across all experiments, and the sur-
face diffusion coefficient is set as ¢ = 0.08, the stabilization parameter A = 1, and the
concave term coefficient Ag = 1.
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6.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the scheme.
Considered computational domain Q = [0, 1]2, the initial data is chosen as

o(z,y,t) =2+ % sin(2mz) cos(2my) cos(t).
First, we fix the spatial resolution as N, = 256 (with h = 1/256 ), so that the spatial nu-
merical error is negligible, the final time is set as 7" = 1. Naturally, a sequence of time
step sizes are taken as 7 = T'/N;, with V; = 100, 200, 400, 800, 1600, 3200, 6400, 12800.
The expected temporal numerical accuracy assumption e = C'72 indicates that In |e| =
In(CT?) — 2In Ny, so that we plot In|e| vs. In N; to demonstrate the temporal conver-
gence order. In Fig. 1, we quantify our calculation error using the differences between
adjacent time steps at the same node, measured in both the L> norm and L? norm.
We observe that our scheme almost perfect matches the second-order accuracy in time.
For the spatial convergence test, we fix the temporal resolution at N; = 12800 (with
7 = 1/12800), and set the final time as 7" = 1. Naturally, a sequence of spatial step
sizes is taken as h = 1/N,, where N, = 4, 8,16, 32,64, 128,256, 512. Similarly, we plot
In |e| vs. In Ny as shown in Fig. 2, which verifies a consistent second-order convergence
in space.

10 T T 10° ;
PO = CORY s
@ . Bl q, @ [
== 2
Slope = -2

v, —-B--?

Slope = -2
10t 1

102 ¢

Error
Error

103k

104

B 10'5 L
10 10t 102 10°

Figure 1: Errors and convergence rates of the
fully discrete scheme, where h = 1/256 and
T=1.

6.2. Coarsening process

Figure 2: Errors and convergence rates of the

fully discrete scheme, where 7 = 7.8125¢™°> and
T=1.

In this subsection, we perform a two-dimensional numerical simulation showing
the coarsening process. The computational domain is set as 2 = (0, L)%, with L = 12.8.

The initial data is given by

é(x,y,0) =240.1(2r; 5 — 1),
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-120

-130

-140 . . . . .
0 100 200 300 400 500 600

Figure 4: Snapshots of the computed height function ¢ at the indicated times for the parameters L =
12.8,¢ = 0.08.
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where r; ; are uniformly distributed random numbers in [0,1]. We employ a grid
resolution of 128 x 128 with a time step 7 = 0.002, and the parameters are set to
A = Ag =1, = 0.08. As shown in Fig. 3, the energy decays rapidly initially, followed
by a slower decay process. The inclusion of phase diagrams is benefit to observe the
phase state changes corresponding to energy variations.

The time snapshots of the evolution are presented in Fig. 4, allowing for clear ob-
servation of significant coarsening in the system. In the early stages, numerous small
hills (yellow) with flat bases (black) are present. As the coarsening process advances, it
is noteworthy that the regions marked by dashed ellipses in Fig. 4 gradually disappear.
Undoubtedly, after ¢ = 600, a single hill structure will emerge, and further coarsening
will not occur, consistent with the findings reported in [38]. Furthermore, Fig. 5 is
composed of two sections. The upper panel illustrates the evolution of the maximum
and minimum values of the phase variable. The red solid line indicates that the height
function ¢ is numerically greater than zero. The lower panel presents the temporal
evolution of mass. These numerical results are in agreement with both theoretical pre-
dictions and empirical observations, thereby validating the accuracy of the numerical
scheme and the reliability of the theoretical analysis.

0 100 200 300 400 500 600

%)
%)
g L I TENE SREE CRRRT TERE AR RRRE CERE PR CURE R SRR PR RRRL CURE R RRE RRE R R

327 i

3265 1 1 1 1 1
0 100 200 300 400 500 600

t

Figure 5: Evolution of the maximum and minimum values of the computed height function ¢ (top) and
mass evolution (bottom) for the parameters L = 12.8,¢ = 0.08.
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7. Conclusions

A mass lumped mixed finite element numerical scheme is proposed and analyzed
for the droplet liquid film model by using the convex splitting idea, in which a sin-
gular Leonard-Jones energy potential is involved. The BDF temporal discrete and
second-order Adams-Bashforth extrapolation formula has been used to construct the
full discrete scheme. Combined Douglas-Dupont regularization term, the modified en-
ergy stability property is estimated. In order to facilitate error analysis, we designed
a convex-concave decomposition, so that the concave part corresponds to a quadratic
energy. Further, an optimal rate convergence analysis for the proposed scheme is es-
tablished as well. Finally, mass conservation, energy stability, bound of the numerical
solution and the second order accurate are demonstrated in the numerical experiments.
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