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Abstract. In this paper, we propose and analyze a second order accurate (in time)
mass lumped mixed finite element numerical scheme for the liquid thin film coars-

ening model with a singular Leonard-Jones energy potential. The backward dif-

ferentiation formula (BDF) stencil is applied in the temporal discretization, and
a convex-concave decomposition is derived, so that the concave part corresponds

to a quadratic energy. In turn, the Leonard-Jones potential term is treated implicitly
and the concave part is approximated by a second order Adams-Bashforth explicit

extrapolation. An artificial Douglas-Dupont regularization term is added to ensure

the energy stability. Furthermore, we provide a theoretical justification that this nu-
merical algorithm has a unique solution, such that the positivity property is always

preserved for the phase variable at a point-wise level, so that a singularity is avoided

in the scheme. In fact, the singular nature of the Leonard-Jones potential term
around the value of 0 and the mass lumped FEM approach play an essential role in

the positivity-preserving property in the discrete level. In addition, an optimal rate
convergence estimate in the ℓ∞(0, T ;H−1

h
)∩ ℓ2(0, T ;H1

h
) norm is presented. Finally,

two numerical experiments are carried out to verify the theoretical properties.
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1. Introduction

Certain liquids on a solid, chemo-attractive substrate spontaneously form a droplet

structure connected by a very thin precursor (or wetting) layer. After the droplets ap-

pear, coarsening will occur, whereby smaller droplets will shrink and larger droplets

will grow. The coarsening behavior, especially the rate of coarsening, of droplets has

been of great scientific interest [38]. The average droplet size increases with the de-

crease of the number of droplets and the increase of the characteristic distance. The

droplet coarsening model with a singular Lennard-Jones energy potential involved

mainly describes the coarsening phenomenon of droplets. The related content of liquid

thin film coarsening phenomenon and some numerical simulation results can be found

in [7,8,14,20,24,30].

Under the assumption that the liquid film does not evaporates, lubrication theory

leads to a single equation for the height function, φ = φ(x, t) > 0, of a time-dependent

film [20], in the form of an H−1 gradient flow

∂tφ = ∇ ·
(

M(φ)∇δφF
)

.

Here F is the free energy of the film/substrate system and is given by

F (φ) =

∫

Ω

(

U(φ) +
ε2

2
|∇φ|2

)

dx, (1.1)

where φ : Ω → R is a periodic height function, ε > 0 is the surface diffusion coefficient,

and

U(φ) =
1

3
φ−8 −

4

3
φ−2

is the well-known Lennard-Jones-type potential [12]. The H−1 gradient flow asso-

ciated with the given free energy functional (1.1) with constant mobility M(φ) ≡ 1
(non-constant mobility case could be handled in a similar way) is

∂tφ = ∆µ, µ := δφF = −
8

3
(φ−9 − φ−3)− ε2∆φ. (1.2)

Obviously, this problem is mass conservation. Due to the gradient structure, the follow-

ing energy dissipation law is formally available:

d

dt
F
(

φ(t)
)

= −

∫

Ω
|∇µ|2 dx ≤ 0.

In addition, from the mathematical expression, the structure of the potential function

requires that the phase variable has to maintain a fixed sign, that is, being either posi-

tive or negative, to avoid a singularity. A positivity-preserving structure is required for

the numerical scheme and for physical reality [38]. For simplicity of presentation, we

assume periodic boundary conditions hold over the rectangular domain Ω. Other types

of boundary conditions, such as homogeneous Neumann, can also be handled.
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There are various time discretization methods for gradient flows to ensure energy

stability. For example, convex splitting method proposed in [6], stabilization method

[31], exponential time differencing approach in [29], invariant energy quadratization

method proposed in [33], scalar auxiliary variable approach proposed in [15] and

Lagrange multiplier approaches. Recently, by introducing a supplementary variable

to reformulate the original problem into a constrained optimization problem, Hong

et al. [9] proposed a novel energy-stable scheme which satisfies the original energy

dissipation.

However, the positivity-preserving property of numerical solutions is very impor-

tant for gradient flows with singular energy functionals. Chen et al. [2] presented

a positivity-preserving theoretical framework for the convex splitting method. In de-

tail, it transforms numerical scheme into Euler-Lagrange equation of a convex discrete

functional, thereby transforming the computation of numerical scheme into the prob-

lem of finding the minimum value of a convex discrete functional. Then the positivity-

preserving property of the numerical solution can be obtained by utilizing the singu-

larity of the energy functional. In recent years, based on above framework for convex

splitting method, there are many works to analyze the positivity of numerical solutions

by finite difference method for gradient flows with singular energy potential. See the

related works for the MMC-TDGL equation [5], ternary MMC system [4], binary fluid-

surfactant system [23], Poisson-Nernst-Planck (PNP) system [17], and droplet liquid

film model [38], etc. Here, we would like to extend the theoretical framework of posi-

tivity preserving scheme to the fully discrete finite element scheme for a droplet liquid

film model. Based on the finite element approximations in space, Karthik et al. [13]

have adopted a robust staggered algorithm to solve a phase field fracture model. The

standard mixed FEM leads to a theoretical difficulty to justify the positivity-preserving

property because of the non-diagonal mass matrix. To overcome this subtle difficulty,

we apply a mass lumped FEM instead, which is a modification of standard FEM and

the diagonal elements are the row sums of the original mass matrix [26]. There are

also a few works using the mass lumped FEM to justify the positivity-preserving prop-

erty for gradient flows with logarithmic singularity potential [18,34]. At present, most

high-order schemes in temporal discretization have been constructed for polynomial

phase-field gradient flows without singularity, such as extrapolated Runge-Kutta with

scalar auxiliary variable (RK-SAV) method in time [1, 25, 27, 28], exponential scalar

auxiliary variable approaches with relaxation (RE-SAV) method [11, 19] or the k-th

backward differentiation formula (BDFk) method [3,16].

In [22], the author proposed and analyzed a finite element approximation of the re-

laxed Cahn-Hilliard equation with singular single-well potential of Lennard-Jones type

and degenerate mobility that is energy stable and nonnegativity preserving. Recently,

Zhang et al. [36, 37] analyzed two linear and efficiency schemes by using the (S)SAV

approach to solve the liquid thin film coarsening model. However, the SAV method

incorporates nonlinear energy functionals into the scalar auxiliary variable, making

it difficult to theoretically obtain the positivity-preserving property of numerical solu-

tion. Furthermore, the coarsening dynamics problem usually is a long time process.
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To improve the computational efficiency, some adaptive time stepping strategies has

also become a popular issue for a class of PDEs which is relatively more difficult than

the uniform temporal mesh in theoretical analysis. There are also some works on

the variable-steps BDF2 schemes combining SAV method [10, 11] or convex splitting

method [18]. Recently, comparing to the preconditional gradient descent method, Park

et al. [21] also proposed a preconditioned Nesterov’s accelerated gradient descentfast

solver for the phase field crystal and functionalized Cahn-Hilliard equations.

In this paper, we propose and analyze a second order accurate in time mass lumped

mixed finite element numerical scheme for a droplet liquid coarsening model for singu-

lar energy functional with negative powers, which is a fourth-order partial differential

system. Compared with the finite difference method, the finite element method has

more flexible mesh, so we consider the finite element method in the spatial discretiza-

tion. In more details, the BDF2 stencil is applied in the temporal discretization, and

a convex-concave decomposition is formulated so that the concave part corresponds

to a quadratic energy. The combined Leonard-Jones potential term is treated implic-

itly, and the concave part is approximated by a second order Adams-Bashforth explicit

extrapolation. An artificial Douglas-Dupont regularization term is added to ensure

the energy stability. Furthermore, the unique solvability and the positivity-preserving

property for the second order scheme is established, in which the singular nature of

the Leonard-Jones potential term around the value of 0 and the mass lumped approach

play an essential role in the positivity-preserving property. In addition, an optimal rate

convergence estimate in the ℓ∞(0, T ;H−1
h ) ∩ ℓ2(0, T ;H1

h) norm is presented, in which

the convexity property of the nonlinear potential term and the surface diffusion term

play an important role.

The rest of the paper is organized as follows. In Section 2, the mass lumped method

and the fully discrete BDF2 scheme is proposed. In Section 3, the unique solvability and

positivity-preserving property for the proposed scheme is derived. Then the modified

energy dissipation laws will be obtained in Section 4. In Section 5, the optimal rate

convergence analysis is provided. The numerical simulation results are presented in

Section 6. Finally, some concluding remarks are given in Section 7.

2. Preliminary and the fully discrete numerical scheme

In this section, we present some definitions and lemmas which will be utilized next,

and the fully discrete scheme based on the mass lumped FEM for the droplet liquid thin

film coarsening equation is proposed.

2.1. The mass lumped finite element method

Let Th be a shape-regular triangulation of Ω, with mesh size h, denote he the diame-

ter of each triangle e ∈ Th and △e the area of e. Note that the element is shape regular,

we can assume that h2e/△e is uniformly bounded by one constant CT : h2e/△e ≤ CT .

Based on the quasi-uniform triangulated mesh Th, the finite element space is defined
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as

Sh :=
{

v ∈ H1
per(Ω) | v is piecewise linear on each e ∈ Th

}

= span {χj | j = 1, . . . , Np} ,

where χj ∈ Sh is the j-th Lagrange nodal basis function, which has the property

χj(Pi) = δij . Define
◦

Sh:= Sh ∩ L
2
0(Ω),

where

L2
0(Ω) =

{

v ∈ L2(Ω) | (v, 1) = 0
}

is the function space with the zero mean in L2(Ω) .

The mass lumped FEM can simplify the computation for the inverse of mass matrix

and overcome the shortage of the standard FEM (2.2) that can not preserve the max-

imum principle for homogeneous parabolic equations. In more details, let Pe,k (k =
1, 2, 3) be the three vertices of triangle. The generation of the mass lumped matrix can

be regarded as introducing the following quadrature formula:

Qh(f) =
∑

e∈Th

Qe(f), ∀f ∈ C(Ω;R),

where

Qe(f) =
△e

3

3
∑

k=1

f (Pe,k) ≈

∫

e

fdx.

By the above quadrature formula, it is easy to derive Qh(χjχk) = 0 for k 6= j, so that

Qh(χjχk) = δjkQh

(

χ2
j

)

, j, k = 1, . . . , Np.

It is obvious that

Qh

(

χ2
j

)

=
∑

e∈Th

Qe

(

χ2
j

)

=
1

3
area (Dj) , Dj := supp(χj).

We define an approximation of the canonical inner product on Sh by

(ψ, η)Q := Qh(ψη), ∀ψ, η ∈ Sh. (2.1)

We define ‖η‖Q :=
√

(η, η)Q for any η ∈ Sh. This norm is observed to be equivalent to

the standard ‖ · ‖L2 norm by considering each triangle separately.

To facilitate the analysis below, we have to modify the definition of the discrete

Laplacian operator and the discrete H−1 norm. In fact, the primary difference is in the

integral definition.

Definition 2.1. The discrete Laplacian operator ∆h : Sh →
◦

Sh is defined as follows: For

any vh ∈ Sh, ∆hvh ∈
◦

Sh denote the unique solution to the problem

(∆hvh,χ)Q = − (∇vh,∇χ) , ∀χ ∈ Sh.
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It is straightforward to show that by restricting the domain, ∆h :
◦

Sh→
◦

Sh is invert-

ible, and for any vh ∈
◦

Sh, we have

(

∇ (−∆h)
−1 vh,∇χ

)

= (vh, χ)Q , ∀χ ∈ Sh.

Definition 2.2. The discrete H−1 norm ‖ · ‖−1,Q, is defined as follows:

‖vh‖−1,Q :=
√

(

vh, (−∆h)−1vh
)

Q
, ∀vh ∈

◦

Sh .

2.2. The fully discrete numerical scheme

We recall a convex-concave decomposition of the energy (1.1). The detailed proof

of the following preliminary and lemma results could be found in the work [38].

Lemma 2.1. For x > 0, the function

f(x) =
1

3
x−8 −

4

3
x−2 +

4

3
A0x

2

is convex, provided that

A0 ≥ A⋆
0 :=

9

5

(

2

15

)
2
3

.

As a result, we obtain the following decomposition of F (φ):

F (φ) = Fc(φ)− Fe(φ),

where

Fc(φ) =

∫

Ω

(

1

3
φ−8 −

4

3
φ−2 +

4

3
A0φ

2 +
ε2

2
|∇φ|2

)

dx, Fe(φ) =

∫

Ω

4

3
A0φ

2dx,

and

g(φ) := −
8

3
(φ−9 − φ−3) +

8

3
A0φ, δφFc = g(φ) − ε2∆φ, δφFe =

8

3
A0φ.

The mixed weak formulation of the droplet liquid film equation (1.2) is to find (φ, µ) ∈
L2(0, T ;H1

per(Ω)), with φt ∈ L
2(0, T ;H−1

per(Ω)), satisfying







(φt, v) + (∇µ,∇v) = 0, ∀v ∈ H1
per(Ω),

(µ,w) =

(

g(φ) −
8

3
A0φ,w

)

+ ε2(∇φ,∇w), ∀w ∈ H1
per(Ω)

(2.2)

for almost every t ∈ [0, T ].
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Using the idea of the convex splitting and the mass lumped FEM, we consider the

following semi-implicit, fully discrete scheme: For n ≥ 1, given φnh, φ
n−1
h ∈ Sh, find

φn+1
h , µn+1

h ∈ Sh, such that



































(

3φn+1
h − 4φnh + φn−1

h

2τ
, vh

)

Q

+
(

∇µn+1
h ,∇vh

)

= 0, ∀vh ∈ Sh,

(

µn+1
h , wh

)

Q
=

(

g(φn+1
h )−

8

3
A0φ̌

n+1
h , wh

)

Q

+ ε2(∇φn+1
h ,∇wh)

+Aτ
(

∇(φn+1
h − φnh),∇wh

)

, ∀wh ∈ Sh,

(2.3)

where φ̌n+1
h := 2φnh − φn−1

h and A ≥ 0 is a stabilization parameter to be determined.

The initialization step comes from the first-order convex splitting method and the mass

lumped FEM, as follows:



















(

φ1h − φ0h
τ

, vh

)

Q

+
(

∇µ1h,∇vh
)

= 0, ∀vh ∈ Sh,

(

µ1h, wh

)

Q
=

(

g(φ1h)−
8

3
A0φ

0
h, wh

)

Q

+ ε2
(

∇φ1h,∇wh

)

, ∀wh ∈ Sh.

(2.4)

The initial data is chosen φ0h := Rhφ
0, where the Ritz projection operator Rh : H1

per(Ω)
→ Sh, satisfying

(

∇(Rhu− u),∇χ
)

= 0, ∀χ ∈ Sh, (Rhu− u, 1) = 0.

3. Unique solvability analysis

In this section, the unique existence and positivity-preserving property of the so-

lution for the second order fully discrete numerical scheme is verified. If the solution

exists, they will hold the mass conservative property at a discrete level

φ̄0h := |Ω|−1
(

φ0h, 1
)

Q
= φ̄1h = · · · = φ̄nh := |Ω|−1(φnh, 1)Q, ∀n ∈ N.

The following lemmas are needed to prove the desired result, the detailed proof could

be found in the work [35].

Lemma 3.1. Given u1, u2 ∈ Sh, with u2−u1 ∈
◦

Sh. Suppose that ‖u1‖∞ < 1, ‖u2‖∞ ≤M .

Then, we have the following estimate:

∥

∥(−∆h)
−1 (u2 − u1)

∥

∥

∞
≤ C1,

where C1 > 0 depends only upon M and Ω. In particular, C1 is independent of the mesh

spacing h .
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Lemma 3.2. For any φ ∈ Sh, and any piecewise linear Lagrange nodal basis element χj ,

we have

(∇φ,∇χj) ≤
∑

e∈Dj

h2e
2△e

3
∑

i=1

φ(Pe,i)

on Th with mesh size he.

Theorem 3.1. Assume that M(φ) ≡ 1. Given φkh ∈ Sh, with δ0 ≤ φkh ≤Mh, k = n, n− 1,

for some δ0 > 0,Mh > 0, and φ̄nh = φ̄n−1
h = φ̄0h, there exists a unique solution φn+1

h ∈ Sh

to (2.3), with φn+1
h − φ̄nh ∈

◦

Sh and φn+1
h > 0 at a point-wise level.

Proof. The numerical scheme is a minimizer of the following discrete energy func-

tional:

J (φ) =
1

3τ

∥

∥

∥

∥

3

2
φ− 2φnh +

1

2
φn−1
h

∥

∥

∥

∥

2

−1,Q

+
1

3
(φ−8 − 4φ−2, 1)Q

+
4

3
A0(φ

2, 1)Q +
ε2 +Aτ

2
‖∇φ‖22 − (∇φ,Aτ∇φnh)−

8

3
A0(φ̌

n+1
h , φ)Q,

over an admissible set

Ah :=
{

φ ∈ Sh | 0 < φ ≤Mh, (φ− φ̄0h, 1)Q = 0
}

,

where Mh = 3φ̄0h|Ω|/area(D), D := min1≤j≤Np |supp(χj)|. Details, we have

φ̄0h =
1

|Ω|
(φh, 1)Q =

1

|Ω|

∑

e∈Th

∆e

3

3
∑

k=1

φh(Pe,k)

≥
1

3|Ω|
area(Dj)φh(Pj), j = 1, 2, . . . , Np,

this means that φ ≤ Mh. To facilitate the analysis below and use Lemma 3.1, we

transform the minimization problem into an equivalent one. Consider the functional

F(ϕ) := J
(

ϕ+ φ̄0h
)

=
1

3τ

∥

∥

∥

∥

3

2

(

ϕ+ φ̄0h
)

− 2φnh +
1

2
φn−1
h

∥

∥

∥

∥

2

−1,Q

+
1

3

(

(ϕ+ φ̄0h)
−8 − 4(ϕ + φ̄0h)

−2, 1
)

Q

+
4

3
A0

(

(ϕ+ φ̄0h)
2, 1
)

Q
+
ε2 +Aτ

2
‖∇ϕ‖22

−
(

∇(ϕ+ φ̄0h), Aτ∇φ
n
h

)

−
8

3
A0

(

φ̌n+1
h , ϕ+ φ̄0h

)

Q
,

where ϕ lies in the following admissible set:

Åh :=
{

ϕ ∈
◦

Sh | − φ̄0h < ϕ ≤Mh − φ̄0h

}

.
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Observe that F is a strictly convex functional on an bounded, compact and convex set

Åh. In order to show that the minimizer can not reach the left boundary of Åh, we

introduce the following set with a sufficiently small δ, for δ ∈ (0, 1/2):

Åh,δ :=
{

ϕ ∈
◦

Sh | δ − φ̄0h ≤ ϕ ≤Mh − φ̄0h

}

.

Since Åh,δ is a bounded, compact, and convex set in the subspace
◦

Sh, there exists a min-

imizer of F over Åh,δ. The key point of the positivity analysis is that such a minimizer

could not occur on the left boundary, when δ is sufficiently small.

To get a contradiction, assume that the minimizer of F , call it ϕ⋆ occurs at the left

boundary of Åh,δ. There is at least one grid P~α0
= (i0, j0) such that ϕ⋆|~α0

= δ−φ̄0h. Thus,

the numerical function ϕ⋆ has a global minimum at ~α0. Suppose that P~α1
= (i1, j1) is

a grid point at which ϕ⋆ achieves its maximum. By the fact that ϕ̄⋆ = 0, it is obvious

that 0 ≤ ϕ⋆|~α1
≤ Mh − φ̄0h. Since F is smooth over Åh,δ, for all ϕ ∈

◦

Sh, the directional

derivative becomes

dsF(ϕ⋆ + sψ)|s=0 =
1

τ

(

(−∆h)
−1

(

3

2
(ϕ⋆ + φ̄0h)− 2φnh +

1

2
φn−1
h

)

, ψ

)

Q

+
8

3

(

(−ϕ⋆ + φ̄0h)
−9 + (ϕ⋆ + φ̄0h)

−3 +A0(ϕ
⋆ + φ̄0h), ψ

)

Q

+ (ε2 +Aτ) (∇ϕ⋆,∇ψ) − (Aτ∇φnh,∇ψ)

−
8

3
A0

(

φ̌n+1
h , ψ

)

Q
=:

5
∑

i=1

Ii. (3.1)

For simplicity, we write φ⋆ := ϕ⋆ + φ̄0h. Let us choose ψ ∈
◦

Sh as

ψ = χ~α0
−

area(D~α0
)

area(D~α1
)
χ~α1

,

where D~α0
, D~α1

are the compact support of the basis functions χ~α0
, χ~α1

, respectively.

Next we will estimate each term on the right-hand side of (3.1). For I1, using the

definition of (·, ·)Q and Lemma 3.1, we have

I1 =
1

τ

(

(−∆h)
−1

(

3

2
φ⋆ − 2φnh +

1

2
φn−1
h

)

, ψ

)

Q

=
1

τ

∑

e∈Th

∆e

3

3
∑

j=1

(−∆h)
−1

(

3

2
φ⋆ − 2φnh +

1

2
φn−1
h

)

ψ(Pe,j)

=
area(D~α0

)

3τ

(

(−∆h)
−1

(

3

2
φ⋆ − 2φnh +

1

2
φn−1
h

)

|~α0

−(−∆h)
−1

(

3

2
φ⋆ − 2φnh +

1

2
φn−1
h

)

|~α1

)

≤
area(D~α0

)

3τ
4C1. (3.2)
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For I2, using φ⋆|~α0
= δ, φ⋆|~α1

≥ φ̄0h and the monotonicity of function g(φ), we have

I2 =
8

3

(

−(φ⋆)−9 + (φ⋆)−3 +A0φ
⋆, ψ
)

Q

=
8

3

∑

e∈Th

∆e

3

3
∑

j=1

(

−(φ⋆)−9 + (φ⋆)−3 +A0φ
⋆
)

ψ(Pe,j)

=
8

3

area(D~α0
)

3

(

(−(φ⋆)−9 + (φ⋆)−3 +A0φ
⋆)|~α0

− (−(φ⋆)−9 + (φ⋆)−3 +A0φ
⋆)|~α1

)

≤
8 area(D~α0

)

9

(

−δ−9 + δ−3 + (φ̄0h)
−9 − (φ̄0h)

−3 +A0(δ − φ̄0h)
)

. (3.3)

For I3, we have

I3 = (ε2 +Aτ) (∇φ⋆,∇ψ)

= (ε2 +Aτ)

(

(∇φ⋆,∇χ~α0
)−

area(D~α0
)

area(D~α1
)
(∇φ⋆,∇χ~α1

)

)

≤ 0. (3.4)

For I4, using the Lemma 3.2, we have

I4 = −Aτ (∇φnh,∇ψ)

= −Aτ

(

(∇φnh,∇χ~α0
)−

area(D~α0
)

area(D~α1
)
(∇φnh,∇χ~α1

)

)

≤ Aτ





∑

e∈D~α0

h2e
2△e

3
∑

j=1

φnh(Pe,j) +
area(D~α0

)

area(D~α1
)

∑

e∈D~α1

h2e
2△e

3
∑

j=1

φnh(Pe,j)





≤ Aτ





∑

e∈D~α0

h2e
2△e

3Mh +
area(D~α0

)

area(D~α1
)

∑

e∈D~α1

h2e
2△e

3Mh





≤
3MhAτCT

2





∑

e∈D~α0

1|e +
area(D~α0

)

area(D~α1
)

∑

e∈D~α1

1|e





=
3MhAτ

2
C̃T , (3.5)

where

C̃T := CT





∑

e∈D~α0

1|e +
area(D~α0

)

area(D~α1
)

∑

e∈D~α1

1|e



 .

For the numerical solution φkh, k = n, n − 1 at the previous time steps, the a-priori

assumption δ0 ≤ ‖φkh‖∞ ≤Mh yields

δ0 −Mh ≤ φkh|~α0
− φkh|~α1

≤Mh − δ0,
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then, we have

3(δ0 −Mh) ≤ φ̌n+1
h |~α0

− φ̌n+1
h |~α1

≤ 3(Mh − δ0). (3.6)

For I5, we have

I5 = −
8

3
A0

(

φ̌n+1
h , ψ

)

Q

= −
8

3
A0

∑

e∈Th

∆e

3

3
∑

j=1

(

φ̌n+1
h ψ

)

(Pe,j)

= −
8

3
A0

area(D~α0
)

3

(

φ̌n+1
h |~α0

− φ̌n+1
h |~α1

)

≤
8

3
A0 area(D~α0

)(Mh − δ0)

≤
8

3
A0 area(D~α0

)Mh, (3.7)

in which the next-to-last comes from the a priori assumption (3.6) at the previous time

steps.

Substituting (3.2)-(3.7) into (3.1), we derive that

dsF(ϕ⋆ + sψ)|s=0 ≤ area(D~α0
)

(

8

9

(

−δ−9 + δ−3 + (φ̄0h)
−9 − (φ̄0h)

−3 +A(δ − φ̄0h)
)

+
4C1

3τ
+

8A0

3
Mh

)

+
3MhAτ

2
C̃T

=
8

9
area(D~α0

)
(

−δ−9 + δ−3 +Aδ + r1
)

,

where

r1 =
(

φ̄0h
)−9

−
(

φ̄0h
)−3

−Aφ̄0h +
3C1

2τ
+ 3A0Mh +

27MhAτC̃T

16 area(D~α0
)
.

Notice that r1 is a constant depending on φ̄0h, area(D~α0
) and τ . For any fixed τ , we can

choose δ ∈ (0, 1/2) sufficiently small such that

−δ−9 + δ−3 +Aδ + r1 < 0. (3.8)

This in turn shows that, provided δ satisfies (3.8) such that

dsF(ϕ⋆ + sψ)|s=0 < 0.

Then the desired contradiction is obtained since the directional derivative is always

nonnegative at the minimum point. This contradicts the assumption that F has a min-

imum at ϕ⋆. Therefore, the global minimum of F over Åh,δ could only possibly occur

at interior point. We conclude that there must be a solution φ ∈ Ah that minimizers

J over Ah, which is equivalent to the numerical solution of (2.3). The existence of

the numerical solution is established. In addition, since J is a strictly convex function

over Ah, the uniqueness analysis for this numerical solution is straightforward. Using

similar argument, the positivity-preserving property is established for the initialization

step (2.4), the details are left to the interested readers.
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4. Energy dissipation law

In the following theorem, we could prove that a modified energy stability is avail-

able for the second order BDF scheme (2.3), provided that A ≥ (4/9)A2
0.

Theorem 4.1. The full discrete numerical scheme (2.3) preserves the modified energy

dissipation law

Ēh

(

φn+1
h , φnh

)

≤ Ēh

(

φnh, φ
n−1
h

)

, if A ≥
4

9
A2

0 (4.1)

with

Ēh

(

φn+1
h , φnh

)

= Eh

(

φn+1
h

)

+
1

4τ
‖φn+1

h − φnh‖
2
−1,Q +

4

3
A0‖φ

n+1
h − φnh‖

2
Q, (4.2)

where

Eh(φ) =
1

3
(φ−8, 1)Q +

ε2

2
‖∇φ‖2 −

4

3
(φ−2, 1)Q.

Proof. In (2.3), by choosing

vh = (−∆h)
−1
(

φn+1
h − φnh

)

, wh = φn+1
h − φnh,

we could derive the following expression:

(

3φn+1
h − 4φnh + φn−1

h

2τ
, (−∆h)

−1(φn+1
h − φnh)

)

Q

+
(

g(φn+1
h ), φn+1

h − φnh
)

Q
−

8

3
A0

(

φ̌n+1
h , φn+1

h − φnh
)

Q

+ ε2
(

∇φn+1
h ,∇(φn+1

h − φnh)
)

+Aτ‖∇(φn+1
h − φnh)‖

2 = 0. (4.3)

For the first term of the left-hand side of (4.3), we have

(

3φn+1
h − 4φnh + φn−1

h

2τ
, (−∆h)

−1(φn+1
h − φnh)

)

Q

≥
5

4τ
‖φn+1

h − φnh‖
2
−1,Q −

1

4τ
‖φnh − φn−1

h ‖2−1,Q. (4.4)

For the second term of the left-hand side of (4.3), we have

(

g(φn+1
h ), φn+1

h − φnh
)

Q

=

(

−
8

3
((φn+1

h )−9 − (φn+1
h )−3) +

8

3
A0φ

n+1
h , φn+1

h − φnh

)

Q

≥
1

3

(

(φn+1
h )−8 − 4(φn+1

h )−2 + 4A0(φ
n+1
h )2, 1

)

Q

−
1

3

(

(φnh)
−8 − 4(φnh)

−2 + 4A0(φ
n
h)

2, 1
)

Q
, (4.5)
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in which the last step comes from the convexity of the function

y =
1

3

(

x−8 − 4x−2 + 4A2
0

)

.

For the third term of the left-hand side of (4.3), we have

−
8

3
A0

(

φ̌n+1
h , φn+1

h − φnh
)

Q

= −
8

3
A0

(

2φnh − φn−1
h , φn+1

h − φnh
)

Q

≥ −
4A0

3

(

‖φn+1
h ‖2Q − ‖φnh‖

2
Q

)

−
4A0

3
‖φnh − φn−1

h ‖2Q. (4.6)

For the fourth term of the left-hand side of (4.3), we have

ε2
(

∇φn+1
h ,∇(φn+1

h − φnh)
)

=
ε2

2

(

‖∇φn+1
h ‖2 − ‖∇φnh‖

2 + ‖∇(φn+1
h − φnh)‖

2
)

. (4.7)

Meanwhile, an application of Cauchy inequality yields

1

τ
‖φn+1

h − φnh‖
2
−1,Q +Aτ‖∇(φn+1

h − φnh)‖
2 ≥ 2A

1
2‖φn+1

h − φnh‖
2
Q. (4.8)

A combination of (4.4)-(4.8) yields

Eh

(

φn+1
h

)

− Eh (φ
n
h) +

1

4τ

(

‖φn+1
h − φnh‖

2
−1,Q − ‖φnh − φn−1

h ‖2−1,Q

)

+
4A0

3

(

‖φn+1
h − φnh‖

2
Q − ‖φnh − φn−1

h ‖2Q
)

≤

(

4

3
A0 − 2A

1
2

)

‖φn+1
h − φnh‖

2
Q ≤ 0,

provided that A ≥ (4/9)A2
0. Therefore, by denoting a modified energy as given by (4.2),

we get the energy estimate (4.1). This completes the proof of Theorem 4.1.

5. Optimal rate convergence analysis in ℓ∞(0, T ;H−1
h ) ∩ ℓ2(0, T ;H1

h)

Next, we will provide a convergence analysis for the proposed numerical scheme

(2.3)-(2.4), in the ℓ∞(0, T ;H−1
h ) ∩ ℓ2(0, T ;H1

h) norm. We denote the exact solution as

φn = φ(x, tn) at t = tn. As usual, a regularity assumption has to be made in the error

analysis. The following estimates hold for Ritz projection:

‖Rhϕ‖1,p ≤ C2‖ϕ‖1,p, ∀ 1 < p ≤ ∞,

‖ϕ−Rhϕ‖0,p + h ‖ϕ−Rhϕ‖1,p ≤ C2h
q+1‖ϕ‖q+1,p, ∀ 1 < p ≤ ∞.

(5.1)
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Suppose that φ ∈ L∞(0, T ;W 1,p). Combining (5.1) and the Sobolev imbedding theo-

rem W 1,p(Ω) →֒ L∞(Ω), for 2 < p ≤ ∞ (d = 2), 3 < p ≤ ∞ (d = 3), there are constants

C3, C4 > 0 such that

‖φn‖∞ ≤ C ‖φn‖1,p ≤ C3,

‖Rhφ
n‖∞ ≤ C ‖Rhφ

n‖1,p ≤ CC2 ‖φ
n‖1,p ≤ C4.

(5.2)

By (φ, µ) we denote the exact solution to the weak formulation (2.2). We say that

the solution pair belongs to regularity of class C if and only if

φ ∈W 2,∞
(

0, T ;L2
per(Ω)

)

∩W 1,∞
(

0, T ;H2
per(Ω)

)

∩ L2
(

0, T ;H2
per(Ω)

)

,

µ ∈ L2
(

0, T ;H2
per(Ω)

)

.

The following lemma is the similar version of [35, Lemma 4.1] where the Ritz projec-

tion solution only has the upper bound, here it has the lower and upper bound.

Lemma 5.1. If φ ∈ H2(Ω), where Ω ∈ R
d, and δ ≤ ‖φ‖∞ ≤ M , δ > 0, then there exists

0 < h0 < 1 such that for any h ≤ h0,

δ

2
≤ ‖Rhφ‖L∞ ≤M +

δ

2
. (5.3)

Lemma 5.2 ([26]). Let κh(v,w) = (v,w)− (v,w)Q denote the quadrature error in (2.1).

Then we have

|κh(ψ,χ)| ≤ C5h
2‖∇ψ‖ · ‖∇χ‖, ∀ψ,χ ∈ Sh.

Lemma 5.3 ([35]). Suppose g(·) ∈ W 2,∞(R) and κh(g(·), ·) = (g(·), ·) − (g(·), ·)Q, then

we have

|κh(g(ψ), χ)| ≤ C6h
2
(

‖∇ψ‖2L4 · ‖χ‖+ ‖∇ψ‖ · ‖∇χ‖
)

, ∀ψ,χ ∈ Sh,

where C6 = Cmax{‖g′′‖L∞ , ‖g′‖L∞} is independent of h.

Lemma 5.4 ([32]). For a fixed T = τ · N is a positive integer, and τ > 0, assume that

{an}Nn=1, {bn}Nn=1 and {cn}N−1
n=1 are all non-negative sequences, with τ

∑N−1
n=1 c

n ≤ C7,

where C7 > 0 is independent of τ and N, but possibly dependent on T. If for all τ > 0,

there is some C8 > 0, which is independent of τ and N, such that

aN + τ

N
∑

n=1

bn ≤ C8 + τ

N−1
∑

n=1

ancn,

then

aN + τ
N
∑

n=1

bn ≤
(

C8 + τa0c0
)

exp

(

τ
N−1
∑

n=1

cn

)

≤
(

C8 + τa0c0
)

exp (C7) .
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Before proceeding into the convergence analysis, we introduce a new norm. Let Ω
be an arbitrary bounded domain and p = [u, v]T ∈ [L2(Ω)]2. We define ‖ · ‖G to be

a weighted inner product

‖p‖2G =
(

p, G(−∆h)
−1

p
)

Q
, G =







1

2
−1

−1
5

2






.

Since G is symmetric positive definite, the norm is well-defined. Moreover,

G =







1

2
−1

−1
5

2






=

( 1

2
−1

−1 2

)

+

(

0 0

0
1

2

)

=: G1 +G2.

By the positive semi-definiteness of G1, we immediately have

‖p‖2G =
(

p, (G1 +G2)(−∆h)
−1

p
)

Q
≥
(

p, G2(−∆h)
−1

p
)

Q
=

1

2
‖v‖2−1,Q .

In addition, for any vi ∈ L2(Ω), i = 0, 1, 2, the following equality is valid:

(

3

2
v2 − 2v1 +

1

2
v0, (−∆h)

−1v2

)

Q

=
1

2

(

‖p2‖
2
G − ‖p1‖

2
G

)

+
‖v2 − 2v1 + v0‖

2
−1,Q

4

with p1 = [v0, v1]
T ,p2 = [v1, v2]

T .

Theorem 5.1. Suppose that the exact solution pair (φ, µ) is the regularity class C for the

fixed time T > 0. Let φnh be the solution at t = tn to the fully discrete numerical scheme

(2.3)-(2.4), for 1 ≤ n ≤ N , with N · τ = T , provided that τ and h are sufficiently small,

then we have the error estimate

‖φn+1 − φn+1
h ‖−1,Q +

(

2τε2
n
∑

k=0

‖∇(φk+1 − φk+1
h )‖2

) 1
2

≤ C(T, ε)(τ2 + h2),

for some constant C(T, ε) > 0 that is independent of τ and h.

Proof. First we define

ξn+1
φ = φn+1 − φn+1

h , ρn+1
φ = φn+1 −Rhφ

n+1, σn+1
φ = Rhφ

n+1 − φn+1
h ,

ξn+1
µ = µn+1 − µn+1

h , ρn+1
µ = µn+1 −Rhµ

n+1, σn+1
µ = Rhµ

n+1 − µn+1
h .

Obviously, ξn+1
φ = ρn+1

φ +σn+1
φ , ξn+1

µ = ρn+1
µ +σn+1

µ . Similar to Chapter 15 of Thomée’s

classical book [26], by careful calculation, the following error evolutionary equation
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could be derived:







































































(

δτσ
n+1
φ , vh

)

Q
+
(

δτρ
n+1
φ , vh

)

+
(

∇σn+1
µ ,∇vh

)

= −
(

Rn+1
1 , vh

)

− κh
(

δτRhφ
n+1, vh

)

,
(

σn+1
µ , wh

)

Q
+
(

ρn+1
µ , wh

)

+ κh
(

Rhµ
n+1, wh

)

=
(

g(φn+1)− g(Rhφ
n+1), wh

)

+
(

g(Rhφ
n+1)− g(φn+1

h ), wh

)

Q

+κh
(

g(Rhφ
n+1), wh

)

−
8A0

3

(

ρn+1
φ , wh

)

−
8A0

3

(

T n+1
1 , wh

)

Q

−
8A0

3

(

RhR
n+1
2 , wh

)

Q
−

8A0

3
κh
(

Rhφ
n+1, wh

)

+ε2
(

∇σn+1
φ ,∇wh

)

+ τ
(

∇T n+1
2 ,∇wh

)

+ τ
(

Rn+1
3 , wh

)

,

(5.4)

where

δτv
n+1 :=











3vn+1 − 4vn + vn−1

2τ
, n ≥ 1,

v1 − v0

τ
, n = 0,

Rn+1
1 := ∂tφ

n+1 − δτφ
n+1,

Rn+1
2 := φn+1 −

{

2φn − φn−1, n ≥ 1,

φ0, n = 0,

Rn+1
3 :=

{

A∆
(

φn+1 − φn
)

, n ≥ 1,

0, n = 0,

T n+1
1 :=

{

2σnφ − σn−1
φ , n ≥ 1,

σ0φ, n = 0,

T n+1
2 :=

{

A
(

σn+1
φ − σnφ

)

, n ≥ 1,

0, n = 0.

(5.5)

Taking wh = ∆hvh in (5.4), we have

(

δτσ
n+1
φ , vh

)

Q
− ε2

(

∇σn+1
φ ,∇∆hvh

)

− τ
(

∇T n+1
2 ,∇∆hvh

)

= −
(

Rn+1
1 , vh

)

− κh
(

δτRhφ
n+1, vh

)

−
(

δτρ
n+1
φ , vh

)

+
(

g(φn+1)− g(Rhφ
n+1),∆hvh

)

+
(

g(Rhφ
n+1)− g(φn+1

h ),∆hvh
)

Q
+ κh

(

g(Rhφ
n+1),∆hvh

)

−
8A0

3

(

ρn+1
φ ,∆hvh

)

−
8A0

3

(

T n+1
1 ,∆hvh

)

Q
−

8A0

3

(

RhR
n+1
2 ,∆hvh

)

Q
−

8A0

3
κh
(

Rhφ
n+1,∆hvh

)

+ τ
(

Rn+1
3 ,∆hvh

)

−
(

ρn+1
µ ,∆hvh

)

− κh
(

Rhµ
n+1,∆hvh

)

. (5.6)
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In turn, taking vh = (−∆h)
−1σn+1

φ , we write Eq. (5.6) as follows:

(

δτσ
n+1
φ , (−∆h)

−1σn+1
φ

)

Q
+ ε2‖∇σn+1

φ ‖2 + τ
(

∇T n+1
2 ,∇σn+1

φ

)

= −
(

Rn+1
1 , (−∆h)

−1σn+1
φ

)

− κh
(

δτRhφ
n+1, (−∆h)

−1σn+1
φ

)

−
(

δτρ
n+1
φ , (−∆h)

−1σn+1
φ

)

−
(

g(φn+1)− g(Rhφ
n+1), σn+1

φ

)

−
(

g(Rhφ
n+1)− g(φn+1

h ), σn+1
φ

)

Q

− κh
(

g(Rhφ
n+1), σn+1

φ

)

+
8A0

3

(

ρn+1
φ , σn+1

φ

)

+
8A0

3

(

T n+1
1 , σn+1

φ

)

Q

+
8A0

3

(

RhR
n+1
2 , σn+1

φ

)

Q
+

8A0

3
κh
(

Rhφ
n+1, σn+1

φ

)

− τ
(

Rn+1
3 , σn+1

φ

)

+
(

ρn+1
µ , σn+1

φ

)

+ κh
(

Rhµ
n+1, σn+1

φ

)

=
13
∑

i=1

Qi =: Q. (5.7)

For the first term of left-hand side of (5.7), we have

(

δτσ
n+1
φ , (−∆h)

−1σn+1
φ

)

Q

=











1

2τ

(

‖pn+1‖2G − ‖pn‖2G
)

+
1

4τ
‖σn+1

φ − 2σnφ + σn−1
φ ‖2−1,Q, n ≥ 1,

1

2τ

(

‖σ1φ‖
2
−1,Q − ‖σ0φ‖

2
−1,Q

)

+
1

2τ
‖σ1φ − σ0φ‖

2
−1,Q, n = 0,

where p
k+1 = (σkφ, σ

k+1
φ )T .

For the third term of left-hand side of (5.7), we have

τ
(

∇T n+1
2 ,∇σn+1

φ

)

=







Aτ
(

∇(σn+1
φ − σnφ),∇σ

n+1
φ

)

≥
1

2
Aτ
(

‖∇σn+1
φ ‖2 − ‖∇σnφ‖

2
)

, n ≥ 1,

0, n = 0,

in which the last step comes from

2(a− b)a = a2 − b2 + (a− b)2,

and A = 0 used for n = 0.

A combination of (5.7) reveals that, the right-hand side of (5.7) is bounded from

below

Q ≥























1

2τ

(

‖pn+1‖2G − ‖pn‖2G
)

+
1

2
Aτ
(

‖∇σn+1
φ ‖2 − ‖∇σnφ‖

2
)

+ε2‖∇σn+1
φ ‖2, n ≥ 1,

1

2τ
‖σ1φ‖

2
−1,Q + ε2‖∇σ1φ‖

2, n = 0,

(5.8)

in which σ0φ ≡ 0.
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For Q1, we have

Q1 = −
(

Rn+1
1 , (−∆h)

−1σn+1
φ

)

= −
(

∇(−∆)−1Rn+1
1 ,∇(−∆h)

−1σn+1
φ

)

≤ ‖∇(−∆)−1Rn+1
1 ‖ · ‖∇(−∆h)

−1σn+1
φ ‖

= ‖Rn+1
1 ‖H−1 · ‖σn+1

φ ‖−1,Q

≤ C‖Rn+1
1 ‖2 · ‖σ

n+1
φ ‖−1,Q

≤











2C2‖Rn+1
1 ‖22 +

1

8
‖σn+1

φ ‖2−1,Q, n ≥ 1,

2C2τ‖R1
1‖

2
2 +

1

8τ
‖σn+1

φ ‖2−1,Q, n = 0,

(5.9)

in which the first step comes from the integral by parts formula, the second step is based

on the Hölder inequality, and the fourth step is based on the fact that ‖f‖H−1 ≤ C‖f‖L2 .

Similarly, for Q3, we have

Q3 = C‖δτρ
n+1
φ ‖2 · ‖σ

n+1
φ ‖−1,Q

≤ CC2h
2‖δτφ

n+1‖H2 · ‖σn+1
φ ‖−1,Q

≤ 2C2C2
2h

4‖δτφ
n+1‖2H2 +

1

8
‖σn+1

φ ‖2−1,Q, (5.10)

in which the next-to-last step is based on the Ritz projection estimate (5.1).

For Q2, we have

− κh
(

δτRhφ
n+1, (−∆h)

−1σn+1
φ

)

≤ C5h
2‖∇δτRhφ

n+1‖ · ‖∇(−∆h)
−1σn+1

φ ‖

= C5h
2‖∇δτRhφ

n+1‖ · ‖σn+1
φ ‖−1,Q

≤ C2C5h
2‖∇δτφ

n+1‖ · ‖σn+1
φ ‖−1,Q

≤ 2
(

C2C5h
2
)2
‖∇δτφ

n+1‖2 +
1

8
‖σn+1

φ ‖2−1,Q, (5.11)

in which the first step is based on the Lemma 5.2, the second step comes from the

definition of ‖ · ‖−1,Q and the third step comes from the Ritz projection estimate (5.1).

Similarly, for Q10, we have

8A0

3
κh
(

Rhφ
n+1, σn+1

φ

)

≤
4C2

5h
4

ε2

(

8A0

3

)2

‖∇Rhφ
n+1‖2 +

ε2

16
‖∇σn+1

φ ‖2

≤
4C2

2C
2
5h

4

ε2

(

8A0

3

)2

‖∇φn+1‖2 +
ε2

16
‖∇σn+1

φ ‖2. (5.12)
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Similarly, for Q13, we have

κh(Rhµ
n+1, σn+1

φ ) ≤
4C2

2C
2
5h

4

ε2
‖∇µn+1‖2 +

ε2

16
‖∇σn+1

φ ‖2. (5.13)

Suppose that δ ≤ φn+1. Based on the Lemma 5.1, we have δ/2 ≤ ‖Rhφ
n+1‖L∞ .

For Q4, we have

−
(

g(φn+1)− g(Rhφ
n+1), σn+1

φ

)

= −
(

g′(λn+1)ρn+1
φ , σn+1

φ

)

≤ ‖g′‖∞ · ‖ρn+1
φ ‖L2 · ‖σn+1

φ ‖L2

≤ C8C‖ρn+1
φ ‖L2 · ‖∇σn+1

φ ‖L2

≤
2(C8Ch

2)2

ε2
‖φn+1‖2H2 +

ε2

8
‖∇σn+1

φ ‖2L2 , (5.14)

in which λn+1 is between φn+1 and Rhφ
n+1, the third step is based on Lemma 5.1 and

Poincaré inequality, and the last step comes from the Ritz projection estimate (5.1).

For Q5, based on the monotonicity of function g(φ), we have

−
(

g(Rhφ
n+1)− g(φn+1

h ), σn+1
φ

)

Q
≤ 0. (5.15)

For Q6, the following bounds could be derived:

− κh
(

g(Rhφ
n+1), σn+1

φ

)

≤ C6h
2
(

‖∇Rhφ
n+1‖2L4 · ‖σ

n+1
φ ‖+ ‖∇Rhφ

n+1‖ · ‖∇σn+1
φ ‖

)

≤ CC2
2C6h

2‖∇φn+1‖2L4 · ‖∇σ
n+1
φ ‖+ C2C6h

2‖∇φn+1‖ · ‖∇σn+1
φ ‖

≤
8(CC2

2C6h
2)2

ε2
‖∇φn+1‖4L4 +

8(C2C6h
2)2

ε2
‖∇φn+1‖2 +

ε2

16
‖∇σn+1

φ ‖2, (5.16)

in which the first step comes from the Lemma 5.3, the second step is based on the

Poincare’s inequality and the Ritz projection estimate (5.1).

For Q7, we have

8A0

3

(

ρn+1
φ , σn+1

φ

)

≤
8A0

3
‖ρn+1

φ ‖H−1 · ‖∇σn+1
φ ‖ ≤

8A0C

3
‖ρn+1

φ ‖ · ‖∇σn+1
φ ‖

≤
8A0C

3
C2h

2‖φn+1‖H2 · ‖∇σn+1
φ ‖

≤ 2

(

8A0CC2

3ε

)2

h4‖φn+1‖2H2 +
ε2

8
‖∇σn+1

φ ‖2, (5.17)

in which the second step comes from ‖f‖H−1 ≤ C‖f‖L2 and the third step comes from

the Ritz projection estimate (5.1).
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Similarly, for Q12, we have

(

ρn+1
µ , σn+1

φ

)

≤ ‖ρn+1
µ ‖H−1 · ‖∇σn+1

φ ‖

≤
4C2C2

2h
4

ε2
‖µn+1‖2H2 +

ε2

16
‖∇σn+1

φ ‖2. (5.18)

For Q8, we have

8A0

3

(

T n+1
1 , σn+1

φ

)

Q
=

8A0

3

(

∇(−∆h)
−1T n+1

1 ,∇σn+1
φ

)

≤
8A0

3
‖∇(−∆h)

−1T n+1
1 ‖ · ‖∇σn+1

φ ‖

=
8A0

3
‖T n+1

1 ‖−1,Q · ‖∇σn+1
φ ‖

≤

(

8A0

3

)2 2

ε2
‖T n+1

1 ‖2−1,Q +
ε2

8
‖∇σn+1

φ ‖2

≤







































(

8A0

3

)2 2

ε2
(

6‖σnφ‖
2
−1,Q + 3‖σn−1

φ ‖2−1,Q

)

+
ε2

8
‖∇σn+1

φ ‖2, n ≥ 1,

(

8A0

3

)2 2

ε2
‖σ0φ‖

2
−1,Q +

ε2

8
‖∇σ1φ‖

2, n = 0,

(5.19)

in which the first and the third step comes from the definition of (·, ·)Q inner product

and ‖ · ‖−1,Q.

For Q9, we have

8A0

3

(

RhR
n+1
2 , σn+1

φ

)

Q
=

8A0

3

(

∇RhR
n+1
2 ,∇(−∆h)

−1σn+1
φ

)

≤
8A0

3
‖∇RhR

n+1
2 ‖L2 · ‖∇(−∆h)

−1σn+1
φ ‖L2

=
8A0

3
‖∇RhR

n+1
2 ‖L2 · ‖σn+1

φ ‖−1,Q

≤
8A0C2

3
‖∇Rn+1

2 ‖L2 · ‖σn+1
φ ‖−1,Q

≤



















2

(

8A0C2

3

)2

‖∇Rn+1
2 ‖2

L2 +
1

8
‖σn+1

φ ‖2−1,Q, n ≥ 1,

2

(

8A0C2

3

)2

Cτ3 +
1

8τ
‖σ1φ‖

2
−1,Q, n = 0,

(5.20)

in which the first step comes from the definition of discrete Laplacian operator and the

fourth step comes from the Ritz projection estimate (5.1).
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For Q11, we have

−τ
(

Rn+1
3 , σn+1

φ

)

= −Aτ
(

∆(φn+1 − φn), σn+1
φ

)

= Aτ
(

∇(φn+1 − φn),∇σn+1
φ

)

≤ Aτ‖∇(φn+1 − φn)‖ · ‖∇σn+1
φ ‖

≤







2(Aτ)2

ε2
‖∇(φn+1 − φn)‖2 +

ε2

8
‖∇σn+1

φ ‖2, n ≥ 1,

0, n = 0.
(5.21)

Substituting above estimates (5.9)-(5.21) into the left-hand side of (5.7), we have, for

n ≥ 1,

Q ≤ 2C2‖Rn+1
1 ‖22 + 2C2C2

2h
4‖δτφ

n+1‖2H2 + 2

(

8A0C2

3

)2

‖∇Rn+1
2 ‖2L2

+ 2(C2C5h
2)2‖∇δτφ

n+1‖2 +
8(CC2

2C6h
2)2

ε2
‖∇φn+1‖4L4 +

8(C2C6h
2)2

ε2
‖∇φn+1‖2

+
4C2

2C
2
5h

4

ε2

(

8A0

3

)2

‖∇φn+1‖2 +
4C2

2C
2
5h

4

ε2
‖∇µn+1‖2 +

2(Aτ)2

ε2
‖∇(φn+1 − φn)‖2

+ 2

(

8A0CC2

3ε

)2

h4‖φn+1‖2H2 +
4C2C2

2h
4

ε2
‖µn+1‖2H2

+

(

8A0

3

)2 2

ε2
(

6‖σnφ‖
2
−1,Q + 3‖σn−1

φ ‖2−1,Q

)

+
2(C8Ch

2)2

ε2
‖φn+1‖2H2

+
3ε2

4
‖∇σn+1

φ ‖2 +
1

2
‖σn+1

φ ‖2−1,Q. (5.22)

For n = 0, a similar inequality could be derived

Q ≤ 2C2τ‖R1
1‖

2
2 + 2C2C2

2h
4‖δτφ

1‖2H2 + 2

(

8A0C2

3

)2

Cτ3

+ 2(C2C5h
2)2‖∇δτφ

1‖2 +
8(CC2

2C6h
2)2

ε2
‖∇φ1‖4L4 +

8(C2C6h
2)2

ε2
‖∇φ1‖2

+
4C2

2C
2
5h

4

ε2

(

8A0

3

)2

‖∇φ1‖2 +
4C2

2C
2
5h

4

ε2
‖∇µ1‖2

+ 2

(

8A0CC2

3ε

)2

h4‖φ1‖2H2 +
4C2C2

2h
4

ε2
‖µ1‖2H2

+
2(C8Ch

2)2

ε2
‖φ1‖2H2 +

3ε2

4
‖∇σ1φ‖

2 +
1

8τ
‖σn+1

φ ‖2−1,Q +
3

8
‖σ1φ‖

2
−1,Q. (5.23)

By the Cauchy-Schwarz inequality, we have the following estimate:

‖Rn+1
1 ‖2 ≤















32τ3
∫ tn+1

tn−1

‖∂tttφ‖
2dt = Cτ4, n ≥ 1,

τ

3

∫ t1

0
‖∂ttφ‖

2dt ≤
τ2

3
‖φ‖W 2,∞(0,T ;L2) = Cτ2, n = 0.
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An analogous estimate is available for the second remainder term

‖Rn+1
2 ‖2 ≤















32τ3
∫ tn+1

tn−1

‖∂ttφ‖
2dt = Cτ4, n ≥ 1,

τ

∫ t1

0
‖∂tφ‖

2dt ≤ τ2‖φ‖W 1,∞(0,T ;L2) = Cτ2, n = 0,

‖∇Rn+1
2 ‖2 ≤















32τ3
∫ tn+1

tn−1

‖∂tt∇φ‖
2dt = Cτ4, n ≥ 1,

τ

∫ t1

0
‖∂t∇φ‖

2dt ≤ τ2‖φ‖W 1,∞(0,T ;H1
per(Ω)) = Cτ2, n = 0.

For the third remainder term, we obtain the estimate

‖∇(φn+1 − φn)‖2 ≤











τ

∫ tn+1

tn

‖∂t∇φ‖
2dt ≤ τ2‖φ‖W 1,∞(0,T ;H1

per(Ω)) = Cτ2, n ≥ 1,

0, n = 0.

Combining (5.8) and (5.22), for n ≥ 1, we have

1

2τ

(

‖pn+1‖2G − ‖pn‖2G
)

+
1

2
Aτ
(

‖∇σn+1
φ ‖2 − ‖∇σnφ‖

2
)

+
ε2

4
‖∇σn+1

φ ‖2

≤ 2C2‖Rn+1
1 ‖22 + 2C2C2

2h
4‖δτφ

n+1‖2H2 + 2

(

8A0C2

3

)2

‖∇Rn+1
2 ‖2L2

+ 2(C2C5h
2)2‖∇δτφ

n+1‖2 +
8(CC2

2C6h
2)2

ε2
‖∇φn+1‖4L4 +

8(C2C6h
2)2

ε2
‖∇φn+1‖2

+
4C2

2C
2
5h

4

ε2

(

8A0

3

)2

‖∇φn+1‖2 +
4C2

2C
2
5h

4

ε2
‖∇µn+1‖2 +

2(Aτ)2

ε2
‖∇(φn+1 − φn)‖2

+

(

2

(

8A0CC2

3ε

)2

+
2(C8C)2

ε2

)

h4‖φn+1‖2H2 +
4C2C2

2h
4

ε2
‖µn+1‖2H2

+

(

8A0

3

)2 2

ε2
(

6‖σnφ‖
2
−1,Q + 3‖σn−1

φ ‖2−1,Q

)

+
1

2
‖σn+1

φ ‖2−1,Q, (5.24)

in which

‖p1‖2G =
5

2
‖σ1φ‖

2
−1,Q, ‖pn+1‖2G ≥

1

2
‖σn+1

φ ‖2−1,Q.

Combining (5.8) and (5.23), for n = 0, a similar inequality could be derived

3

8τ
‖σ1φ‖

2
−1,Q +

ε2

4
‖∇σ1φ‖

2

≤ 2C2τ‖R1
1‖

2
2 + 2C2C2

2h
4‖δτφ

1‖2H2

+ 2

(

8A0C2

3

)2

Cτ3 + 2(C2C5h
2)2‖∇δτφ

1‖2
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+
4C2

2C
2
5h

4

ε2
‖∇µ1‖2 +

8(CC2
2C6h

2)2

ε2
‖∇φ1‖4L4

+

(

8(C2C6)
2

ε2
+

4C2
2C

2
5

ε2
(
8A0

3
)2
)

h4‖∇φ1‖2

+

(

2

(

8A0CC2

3ε

)2

+
2(C8C)2

ε2

)

h4‖φ1‖2H2

+
4C2C2

2h
4

ε2
‖µ1‖2H2 +

3

8
‖σ1φ‖

2
−1,Q. (5.25)

Equivalently, multiplying by 20τ/3 on both sides of (5.25), we have

5

2
‖σ1φ‖

2
−1,Q +

5ε2τ

3
‖∇σ1φ‖

2 ≤
5τ

2
‖σ1φ‖

2
−1,Q +R0, (5.26)

in which

R0 =
40τ

3
C2τ‖R1

1‖
2
2 +

40τ

3
C2C2

2h
4‖δτφ

1‖2H2 +
40τ

3

(

8A0C2

3

)2

Cτ3

+
40τ

3
(C2C5h

2)2‖∇δτφ
1‖2 +

160(CC2
2C6h

2)2τ

3ε2
‖∇φ1‖4L4

+
160(C2C6h

2)2τ

3ε2
‖∇φ1‖2 +

80C2
2C

2
5h

4τ

3ε2

(

8A0

3

)2

‖∇φ1‖2

+
80C2

2C
2
5h

4τ

3ε2
‖∇µ1‖2 +

40τ

3

(

8A0CC2

3ε

)2

h4‖φ1‖2H2

+
80C2C2

2h
4τ

3ε2
‖µ1‖2H2 +

40(C8Ch
2)2τ

3ε2
‖φ1‖2H2

≤ C(ε)(τ4 + h4).

Summing (5.24) from k = 1 to k = n+1, multiplying by 2τ on both sides, we arrive

at the following estimate:

1

2
‖σn+1

φ ‖2−1,Q −
5

2
‖σ1φ‖

2
−1,Q +Aτ2

(

‖∇σn+1
φ ‖2 − ‖∇σ1φ‖

2
)

+
ε2τ

2

n
∑

k=1

‖∇σk+1
φ ‖2

≤

(

8A0

3

)2 4τ

ε2

n
∑

k=1

(

6‖σkφ‖
2
−1,Q + 3‖σk−1

φ ‖2−1,Q

)

+ τ

n
∑

k=1

‖σk+1
φ ‖2−1,Q +

n
∑

k=1

Rk, (5.27)

in which

Rk = 4C2τ‖Rk+1
1 ‖22 + 4C2C2

2h
4τ‖δτφ

k+1‖2H2 + 4

(

8A0C2

3

)2

τ‖∇Rk+1
2 ‖2L2

+ 4(C2C5h
2)2τ‖∇δτφ

k+1‖2 +
16(CC2

2C6h
2)2τ

ε2
‖∇φk+1‖4L4



150 M. Yuan, L. Dong and J. Zhang

+
16(C2C6h

2)2τ

ε2
‖∇φk+1‖2 +

8C2
2C

2
5h

4τ

ε2

(

8A0

3

)2

‖∇φk+1‖2

+
8C2

2C
2
5h

4τ

ε2
‖∇µk+1‖2 +

4A2τ3

ε2
‖∇(φk+1 − φk)‖2

+ 4

(

8A0CC2

3ε

)2

h4τ‖φk+1‖2H2 +
8C2C2

2h
4τ

ε2
‖µk+1‖2H2 +

4(C8Ch
2)2τ

ε2
‖φk+1‖2H2

≤ C(T, ε)(τ4 + h4),

and C(T, ε) is independent of τ and h.

Combining (5.26) and (5.27), we have

1

2
‖σn+1

φ ‖2−1,Q +
5ε2τ

3
‖∇σ1φ‖

2 +Aτ2
(

‖∇σn+1
φ ‖2 − ‖∇σ1φ‖

2
)

+
ε2τ

2

n
∑

k=1

‖∇σk+1
φ ‖2

≤

(

8A0

3

)2 4τ

ε2

n
∑

k=1

(

6‖σkφ‖
2
−1,Q + 3‖σk−1

φ ‖2−1,Q

)

+ τ

n
∑

k=1

‖σk+1
φ ‖2−1,Q

+

n
∑

k=0

Rk +
5τ

2
‖σ1φ‖

2
−1,Q. (5.28)

Let τ ≤ min{7ε2/6A, 1/4}, we have

1

4
‖σn+1

φ ‖2−1,Q +
ε2τ

2

n
∑

k=1

‖∇σk+1
φ ‖2

≤

(

256A2
0

ε2
+

7

2

)

τ
n
∑

k=1

‖σkφ‖
2
−1,Q +

n
∑

k=0

Rk. (5.29)

An application of the discrete Gronwall inequality of Lemma 5.4 leads to the desired

convergence result

‖σn+1
φ ‖2−1,Q + 2ε2τ

n
∑

k=0

‖∇σk+1
φ ‖2 ≤ C(T, ε)(τ4 + h4).

The proof is complete.

6. Numerical results

In this section, we provide two numerical examples to illustrate the presented

scheme satisfies the properties of mass conservation, energy dissipation and positivity-

preserving. The first example demonstrates the convergence order of the proposed

scheme (2.3). The second example aims to test the properties of the numerical solu-

tion and demonstrates the coarsening phenomenon for the droplet liquid film model.

We consistently apply periodic boundary conditions across all experiments, and the sur-

face diffusion coefficient is set as ε = 0.08, the stabilization parameter A = 1, and the

concave term coefficient A0 = 1 .
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6.1. Accuracy test

We first perform numerical simulations to test the convergence rates of the scheme.

Considered computational domain Ω = [0, 1]2, the initial data is chosen as

φ(x, y, t) = 2 +
1

2π
sin(2πx) cos(2πy) cos(t).

First, we fix the spatial resolution as Ns = 256 (with h = 1/256 ), so that the spatial nu-

merical error is negligible, the final time is set as T = 1. Naturally, a sequence of time

step sizes are taken as τ = T/Nt, with Nt = 100, 200, 400, 800, 1600, 3200, 6400, 12800.

The expected temporal numerical accuracy assumption e = Cτ2 indicates that ln |e| =
ln(CT 2) − 2 lnNt, so that we plot ln |e| vs. lnNt to demonstrate the temporal conver-

gence order. In Fig. 1, we quantify our calculation error using the differences between

adjacent time steps at the same node, measured in both the L∞ norm and L2 norm.

We observe that our scheme almost perfect matches the second-order accuracy in time.

For the spatial convergence test, we fix the temporal resolution at Nt = 12800 (with

τ = 1/12800), and set the final time as T = 1. Naturally, a sequence of spatial step

sizes is taken as h = 1/Ns, where Ns = 4, 8, 16, 32, 64, 128, 256, 512. Similarly, we plot

ln |e| vs. lnNs as shown in Fig. 2, which verifies a consistent second-order convergence

in space.
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Figure 1: Errors and convergence rates of the
fully discrete scheme, where h = 1/256 and
T = 1.
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Figure 2: Errors and convergence rates of the
fully discrete scheme, where τ = 7.8125e−5 and
T = 1.

6.2. Coarsening process

In this subsection, we perform a two-dimensional numerical simulation showing

the coarsening process. The computational domain is set as Ω = (0, L)2, with L = 12.8.

The initial data is given by

φ(x, y, 0) = 2 + 0.1(2ri,j − 1),



152 M. Yuan, L. Dong and J. Zhang

Figure 3: Evolution of the discrete energy of the fully discrete scheme, where h = 1/128 and T = 600.

Figure 4: Snapshots of the computed height function φ at the indicated times for the parameters L =

12.8, ε = 0.08.
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where ri,j are uniformly distributed random numbers in [0, 1]. We employ a grid

resolution of 128 × 128 with a time step τ = 0.002, and the parameters are set to

A = A0 = 1, ε = 0.08. As shown in Fig. 3, the energy decays rapidly initially, followed

by a slower decay process. The inclusion of phase diagrams is benefit to observe the

phase state changes corresponding to energy variations.

The time snapshots of the evolution are presented in Fig. 4, allowing for clear ob-

servation of significant coarsening in the system. In the early stages, numerous small

hills (yellow) with flat bases (black) are present. As the coarsening process advances, it

is noteworthy that the regions marked by dashed ellipses in Fig. 4 gradually disappear.

Undoubtedly, after t = 600, a single hill structure will emerge, and further coarsening

will not occur, consistent with the findings reported in [38]. Furthermore, Fig. 5 is

composed of two sections. The upper panel illustrates the evolution of the maximum

and minimum values of the phase variable. The red solid line indicates that the height

function φ is numerically greater than zero. The lower panel presents the temporal

evolution of mass. These numerical results are in agreement with both theoretical pre-

dictions and empirical observations, thereby validating the accuracy of the numerical

scheme and the reliability of the theoretical analysis.
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Figure 5: Evolution of the maximum and minimum values of the computed height function φ (top) and
mass evolution (bottom) for the parameters L = 12.8, ε = 0.08.
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7. Conclusions

A mass lumped mixed finite element numerical scheme is proposed and analyzed

for the droplet liquid film model by using the convex splitting idea, in which a sin-

gular Leonard-Jones energy potential is involved. The BDF temporal discrete and

second-order Adams-Bashforth extrapolation formula has been used to construct the

full discrete scheme. Combined Douglas-Dupont regularization term, the modified en-

ergy stability property is estimated. In order to facilitate error analysis, we designed

a convex-concave decomposition, so that the concave part corresponds to a quadratic

energy. Further, an optimal rate convergence analysis for the proposed scheme is es-

tablished as well. Finally, mass conservation, energy stability, bound of the numerical

solution and the second order accurate are demonstrated in the numerical experiments.
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