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Abstract. In the conforming discontinuous Galerkin method, the standard bilinear

form for the conforming finite elements is applied to discontinuous finite elements
without adding any inter-element nor penalty form. The Pk (k ≥ 1) discontinuous

finite elements and the Pk−1 weak Galerkin finite elements are adopted to approx-
imate the velocity and the pressure respectively, when solving the Stokes equations

on triangular or tetrahedral meshes. The discontinuous finite element solutions are

divergence-free and surprisingly H-div functions on the whole domain. The optimal
order convergence is achieved for both variables and for all k ≥ 1. The theory is

verified by numerical examples.
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1. Introduction

In this paper, we introduce a divergence-free conforming discontinuous Galerkin

method to solve the Stokes equations, finding unknown velocity u and pressure p such

that

−µ∆u+∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = 0 on ∂Ω, (1.3)

where viscosity µ > 0 is a constant, and Ω is a polygonal or polyhedral domain in

R
d (d = 2, 3). The weak form of the Stokes equations is: Find (u, p) ∈ H1

0 (Ω)× L2
0(Ω)
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such that

(µ∇u,∇v)− (p,∇ · v) = (f ,v), ∀v ∈ H1
0 (Ω), (1.4)

(q,∇ · u) = 0, ∀ q ∈ L2
0(Ω), (1.5)

where L2
0(Ω) is the L2 space with mean value 0 on the domain.

To get divergence-free finite element solutions, the conforming finite element me-

thod employs the continuous Pk finite elements and the discontinuous Pk−1 finite ele-

ments approximating the velocity and the pressure respectively on triangular or tetra-

hedral meshes, using the bilinear forms in (1.4)-(1.5). However, most such combina-

tions are not stable. The first such a working method was discovered by Scott and

Vogelius [34, 35], on 2D triangular meshes for all k ≥ 4, provided that the underly-

ing meshes have no nearly-singular vertex. Such divergence-free finite elements are

studied on special 2D and 3D meshes, or with high-order polynomial and/or macro

bubbles, in [3,7,8,10–12,14–16,18,22,27,30–33,44,60–68,68].

Another method, to get divergence-free finite element solutions, is to employ H(div)
finite element functions on triangular and tetrahedral meshes. That is, the H(div)-
Pk/discontinuous-Pk−1 mixed element also produces divergence-free solutions, cf. [26,

37,39,42]. However, as the H(div) finite element is not H1-conforming, in most cases,

additional inter-element and penalty forms are added to the variational formulation

(1.4)-(1.5). One can get rid of all such stabilizers by using proper weak gradients and

weak divergences [28,29,49,50,69].

A completely new method, to get divergence-free finite element solutions, is to be

proposed in this work. We start with totally discontinuous Pk (k ≥ 1) polynomials

to approximate the velocity. The resulting discontinuous Pk solutions are no longer

discontinuous, but are continuous in the normal direction on all edges/triangles. That

is, the finite element solutions are in the H(div,Ω) space and are point-wise divergence-

free. Let Th = {T} be a quasi-uniform triangular or tetrahedral mesh with mesh-size h.

The conforming discontinuous Galerkin (CDG) finite element spaces are defined by

Vh =
{

uh ∈ L2(Ω) : uh|T ∈ Pk(T ), T ∈ Th
}

, (1.6)

where Pk(T ) is the space of 2D or 3D vector polynomials of degree k ≥ 1 or less on T .

Some references on the CDG methods can be found in [9, 47, 48, 51–56]. The weak

Galerkin (WG) finite element spaces are defined by

Ph =
{

qh = {q0, qb} : q0|T ∈ Pk−1(T ), T ∈ T ; qb|e ∈ Pk(e),

e ∈ Eh; (q0, 1)Th + 〈qb, 1〉∂Th = 0
}

, (1.7)

where Eh is the set of edges or face-triangles in mesh Th, (·, ·)Th =
∑

T∈Th
(·, ·)T and

〈·, ·〉∂Th =
∑

T∈Th
〈·, ·〉∂T . Some references for the WG methods are [1,2,4,6,13,17,19–

21, 23–25, 36, 38, 40, 41, 43, 46, 57–59, 70]. The proposed CDG finite element method

for the Stokes equations reads: Find (uh, ph) ∈ Vh × Ph such that

(µ∇wuh,∇wvh) + (∇wph,vh) = (f ,vh), ∀vh ∈ Vh, (1.8)

(∇wqh,uh) = 0, ∀ qh ∈ Ph, (1.9)


