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Abstract. In the conforming discontinuous Galerkin method, the standard bilinear
form for the conforming finite elements is applied to discontinuous finite elements
without adding any inter-element nor penalty form. The P, (k > 1) discontinuous
finite elements and the P,_; weak Galerkin finite elements are adopted to approx-
imate the velocity and the pressure respectively, when solving the Stokes equations
on triangular or tetrahedral meshes. The discontinuous finite element solutions are
divergence-free and surprisingly H-div functions on the whole domain. The optimal
order convergence is achieved for both variables and for all ¥ > 1. The theory is
verified by numerical examples.
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1. Introduction

In this paper, we introduce a divergence-free conforming discontinuous Galerkin
method to solve the Stokes equations, finding unknown velocity u and pressure p such
that

—pAu+Vp=f in Q, (1.1
V-u=0 in €, (1.2)
u=20 on 01, (1.3)

where viscosity p > 0 is a constant, and {2 is a polygonal or polyhedral domain in
R? (d = 2,3). The weak form of the Stokes equations is: Find (u,p) € H(Q) x L&()
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such that
(uVu, Vv) — (p,V -v) = (f,v), Vv e H}Q), (1.4
(¢, V-u) =0, Vqe Li(9), (1.5)

where L3() is the L? space with mean value 0 on the domain.

To get divergence-free finite element solutions, the conforming finite element me-
thod employs the continuous P; finite elements and the discontinuous P;_; finite ele-
ments approximating the velocity and the pressure respectively on triangular or tetra-
hedral meshes, using the bilinear forms in (1.4)-(1.5). However, most such combina-
tions are not stable. The first such a working method was discovered by Scott and
Vogelius [34, 35], on 2D triangular meshes for all £ > 4, provided that the underly-
ing meshes have no nearly-singular vertex. Such divergence-free finite elements are
studied on special 2D and 3D meshes, or with high-order polynomial and/or macro
bubbles, in [3,7,8,10-12,14-16,18,22,27,30-33, 44,60-68, 68].

Another method, to get divergence-free finite element solutions, is to employ H (div)
finite element functions on triangular and tetrahedral meshes. That is, the H(div)-
P,/discontinuous-P,_; mixed element also produces divergence-free solutions, cf. [26,
37,39,42]. However, as the H(div) finite element is not H'-conforming, in most cases,
additional inter-element and penalty forms are added to the variational formulation
(1.4)-(1.5). One can get rid of all such stabilizers by using proper weak gradients and
weak divergences [28,29,49, 50, 69].

A completely new method, to get divergence-free finite element solutions, is to be
proposed in this work. We start with totally discontinuous P, (k > 1) polynomials
to approximate the velocity. The resulting discontinuous P, solutions are no longer
discontinuous, but are continuous in the normal direction on all edges/triangles. That
is, the finite element solutions are in the H (div, {2) space and are point-wise divergence-
free. Let T;, = {T'} be a quasi-uniform triangular or tetrahedral mesh with mesh-size h.
The conforming discontinuous Galerkin (CDG) finite element spaces are defined by

V;, = {uh S LQ(Q) : uh]T S Pk(T), T e ﬂl} , (1.6)

where P (7T) is the space of 2D or 3D vector polynomials of degree k > 1 or less on 7T'.
Some references on the CDG methods can be found in [9,47,48,51-56]. The weak
Galerkin (WG) finite element spaces are defined by

Py, ={an={q0. @} : @o|lr € Peo1(T), T € T; @le € Pile),

e € & (g0, 1)75, + (av, 1)o7, = 0}, (1.7)
where &, is the set of edges or face-triangles in mesh 7, (,-)7, = > per, ()7 and
(.o, = ZTGTh (-,Yor. Some references for the WG methods are [1,2,4,6,13,17,19-
21,23-25,36,38,40,41,43,46,57-59,70]. The proposed CDG finite element method
for the Stokes equations reads: Find (uy,pn) € Vi, x P, such that

(UNVwp, Vovy) + (Vupn, vi) = (£,v), Vv € Vy, (1.8)
(vah’uh) = 07 VQh € Pha (19)



