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Abstract. In the conforming discontinuous Galerkin method, the standard bilinear
form for the conforming finite elements is applied to discontinuous finite elements
without adding any inter-element nor penalty form. The P, (k > 1) discontinuous
finite elements and the P,_; weak Galerkin finite elements are adopted to approx-
imate the velocity and the pressure respectively, when solving the Stokes equations
on triangular or tetrahedral meshes. The discontinuous finite element solutions are
divergence-free and surprisingly H-div functions on the whole domain. The optimal
order convergence is achieved for both variables and for all ¥ > 1. The theory is
verified by numerical examples.
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1. Introduction

In this paper, we introduce a divergence-free conforming discontinuous Galerkin
method to solve the Stokes equations, finding unknown velocity u and pressure p such
that

—pAu+Vp=f in Q, (1.1
V-u=0 in €, (1.2)
u=20 on 01, (1.3)

where viscosity p > 0 is a constant, and {2 is a polygonal or polyhedral domain in
R? (d = 2,3). The weak form of the Stokes equations is: Find (u,p) € H(Q) x L&()
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such that
(uVu, Vv) — (p,V -v) = (f,v), Vv e H}Q), (1.4
(¢, V-u) =0, Vqe Li(9), (1.5)

where L3() is the L? space with mean value 0 on the domain.

To get divergence-free finite element solutions, the conforming finite element me-
thod employs the continuous P; finite elements and the discontinuous P;_; finite ele-
ments approximating the velocity and the pressure respectively on triangular or tetra-
hedral meshes, using the bilinear forms in (1.4)-(1.5). However, most such combina-
tions are not stable. The first such a working method was discovered by Scott and
Vogelius [34, 35], on 2D triangular meshes for all £ > 4, provided that the underly-
ing meshes have no nearly-singular vertex. Such divergence-free finite elements are
studied on special 2D and 3D meshes, or with high-order polynomial and/or macro
bubbles, in [3,7,8,10-12,14-16,18,22,27,30-33, 44,60-68, 68].

Another method, to get divergence-free finite element solutions, is to employ H (div)
finite element functions on triangular and tetrahedral meshes. That is, the H(div)-
P,/discontinuous-P,_; mixed element also produces divergence-free solutions, cf. [26,
37,39,42]. However, as the H(div) finite element is not H'-conforming, in most cases,
additional inter-element and penalty forms are added to the variational formulation
(1.4)-(1.5). One can get rid of all such stabilizers by using proper weak gradients and
weak divergences [28,29,49, 50, 69].

A completely new method, to get divergence-free finite element solutions, is to be
proposed in this work. We start with totally discontinuous P, (k > 1) polynomials
to approximate the velocity. The resulting discontinuous P, solutions are no longer
discontinuous, but are continuous in the normal direction on all edges/triangles. That
is, the finite element solutions are in the H (div, {2) space and are point-wise divergence-
free. Let T;, = {T'} be a quasi-uniform triangular or tetrahedral mesh with mesh-size h.
The conforming discontinuous Galerkin (CDG) finite element spaces are defined by

V;, = {uh S LQ(Q) : uh]T S Pk(T), T e ﬂl} , (1.6)

where P (7T) is the space of 2D or 3D vector polynomials of degree k > 1 or less on 7T'.
Some references on the CDG methods can be found in [9,47,48,51-56]. The weak
Galerkin (WG) finite element spaces are defined by

Py, ={an={q0. @} : @o|lr € Peo1(T), T € T; @le € Pile),

e € & (g0, 1)75, + (av, 1)o7, = 0}, (1.7)
where &, is the set of edges or face-triangles in mesh 7, (,-)7, = > per, ()7 and
(.o, = ZTGTh (-,Yor. Some references for the WG methods are [1,2,4,6,13,17,19-
21,23-25,36,38,40,41,43,46,57-59,70]. The proposed CDG finite element method
for the Stokes equations reads: Find (uy,pn) € Vi, x P, such that

(UNVwp, Vovy) + (Vupn, vi) = (£,v), Vv € Vy, (1.8)
(vah’uh) = 07 VQh € Pha (19)
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where V), and P, are defined in (1.6) and (1.7) respectively, and the weak gradients
Vwuy, and V,py, are defined in (3.2) and (2.3) below, respectively. It is shown that
both the solutions uy and py, of (1.8)-(1.9) converge quasi-optimally. Additionally, the
solution uy, is an H(div) function and is divergence-free. Consequently, the method is
pressure robust, i.e., both the velocity error and the pressure error are independent of
p and p. We verify the theory with some numerical examples in 2D and 3D.

An H(div)-conforming HDG method is proposed in [5], where, comparing to our
CDG-WG method, an inter-element trace velocity u, space [Py (&£,)]¢ and its two La-
grange multiplier spaces [Py ()] for (u — up) - n = 0, are added. Here &}, is the set of
edges/triangles in a triangular/tetrahedral mesh 7;. Thus the normal jump of the dis-
continuous velocity uy, is forced to zero by these five (in 3D) P, trace spaces so that the
resulting solution is also in H(div) and consequently also divergence-free. The method
here is to choose a proper pressure finite element space P, so that the gradient space
is precisely the BDM, space, i.e., VP, = {v; € H(div,Q) : vi|7 € [Pu(T)]%}. If the
pressure space is a little larger, there is no solution as the inf-sup condition would fail.
If the pressure space is a little smaller, it would not force the velocity solution u;, to be
in H(div), neither divergence-free.

The rest of the paper is organized as follows. In Section 2, the auxiliary WG finite
element method is defined and the known results on the WG method are quoted. In
Section 3, the CDG method is defined and the uniqueness of the solution, its H(div)
conformity and its inf-sup condition are also proved. In Section 4, pressure-robust error
estimates for the velocity in H'-norm and for the pressure in L?-norm are established.
In Section 5, optimal order and pressure-robust convergence for the velocity in L?-norm
is proved. In Section 6, we provide several numerical examples in 2D and 3D.

2. Preliminary on WG

For the purpose of error analysis, we define a weak Galerkin finite element space as
follows for approximating the velocity,

V), = {v = {vo,vp} : volr € Pr(T), T € Th, vple € Pryi(e),
e €&, Vploa = 0}. 2.1

For a weak function vy, = {vq, v} € V), its weak gradient V,,v is a piecewise
polynomial such that V,,v|r € [Pyy1(T)]9*¢ and satisfies the following equation:

(Vovi, )7 = —(vo, V- 7)1 + (v, T-n)pp, V7 € [Prpr (1)), (2.2)

where n is the unit outward normal vector on the boundary 97T

For a weak pressure function ¢ = {qo,q} € P, in (1.7), its weak gradient V,q
is defined as a piecewise vector-valued polynomial such that on each T' € 7y, Vg €
P (T) satisfies

(Vtn, @)1 = —(90,V - @)1 + (@, - n)or, Y € [Pe(T))" (2.3)
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We introduce two semi-norms ||v|| and ||v||; » for any v € V, as follows:

IVI? = (Vuv, Vi), (2.4)
VT, = D 1IVvoll: + D hgtlivo — vili3r, (2.5)
TET TeTh

and two semi-norms ||¢|| and ||¢||; , for ¢ € P}, as follows:

gl = (Vg V), (2.6)
lal} s = > IIVaolld + > hrtllao — abli3e- 2.7)
TET TeT

The following norm equivalence inequalities have been proved in [2]:

Culviiin < IVl < Callvlin, Vv e Vy, (2.8)
Cillglln < llall < Collgllin, Vg€ P (2.9)

3. The CDG method

We extend the CDG finite element space V), to a subspace of the WG finite element
space V. For T € T, we define the jump of 7 as [r]. = (7|r — 7|r,)/2 and the
average of 7 as {r}. = (7|r + 7|1,,)/2 and T,, denotes the elements neighboring to
T at an edge/triangle e. For e € 0T N 0F), we define [v;]. = v;, and {vi}. = 0 as
a free-variable on the edge for all v, € V.

Define Ej, : Vj, — V, such that for v € V),

Epv = {v,{v}} € V},. (3.1
For v € V},, we define the V,,v naturally by
Vv =VuEpv, (3.2)
where V,, E;,v is defined by (2.2).
Lemma 3.1. The CDG finite element problem (1.8)-(1.9) has a unique solution.

Proof. It suffices to show that zero is the only solution of (1.8)-(1.9) if f = 0. To
this end, let f = 0 and take v;, = uy, in (1.8) and ¢;, = py, in (1.9). The difference of
the two resulting equations gives

(unha kuh) =0,

which implies that V,u, = V,Epu, = 0 on each element 7. By (2.8), we have
|Erug||1,, = 0 which implies that Vu, = 0 on 7" and uj, — {u} = [u] = 0 on 97T
Thus, we obtain u;, = 0.

Since u, = 0 and f = 0, the Eq. (1.8) becomes (vy, V,pr) = 0 for any vy, € Vy,.
Letting vj, = Vypy, € Pi(T), we have V,,p;, = 0. It follows from (2.9) and p;, € L3(2)
that p, = 0. We have proved the lemma. O
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Theorem 3.1. The CDG finite element solution uy, in (1.8)-(1.9) is an Hy(div, 2) function
and is divergence-free, i.e.,

u; € HQ(diV, Q) and V- u, =0. (3.3)

Proof. In (1.9), letting qo = 0 and ¢, = 0 everywhere except on one edge/triangle e
where 3|, = [un]e, we get, by (2.3),

0= (Van, up) = 2([uy - 0], [uy, - nl) .

e

Thus,
[up-n]e=0 onall ecé& and {up-n}.=0 Veec& NN,

i.e., u, € Hy(div, Q).
In (1.9), letting qo = —V - u; and ¢, = 0, we get, by (2.3),

0= (Van,un) = —(q0, V - up) + {gv, [up))or, = (V-up, V- up),
which proves (3.3). O

Lemma 3.2. There exists a positive constant 3 independent of h such that for all ¢ =

{90, %} € P,

sup V- Vuwd) 5 gy (3.4)

vev, IVl
where ||v]| = [|[VwEnv||o defined by (3.1), (3.2) and (2.4).

Proof. For a qy € L3(2) (because (v,V,q,) = 0 when we choose v in the H(div)
subspace), by (2.3), there is a BDM H(div) interpolation function v such that

V-v=—q, [Vlin <Clallo, vlrePp(T).
Thus, v € V}, and, by (2.5) and (2.8),

(v, Vuwaq) = llaolls = C~'vlinllgollo > Bllvlligolo-

The lemma is proved. O

4. Error estimates

Corresponding to the CDG method (1.8)-(1.9), we introduce a WG method. Let
u, = {ug,up} € Vy and p, € P, be the weak Galerkin finite element solution for
(1.1)-(1.3) such that for all v = {v,v;} € V,, and ¢ € Py,

(uV g, Vuv) + (Vwpr, vo) = (£, vo), (4.1)
(qu, fl()) =0. (42)
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Let II;, be a generic element-wise defined L? projection onto [P, (7))’ where j =
1,d,d x dand T € Tj,. Let Hz be a generic edge/face-wise defined L? projection onto
[Py.(e)]? for e € OT. Define

Qpu = {HkU,HZHu} EVh, Qwp= {HkqP,HZP} € P (4.3)

Theorem 4.1 ([45, Theorems 5.1 and 6.1]). Let @y, = {1, 0} € V}, and pj, € P, be
the WG finite element solution of (4.1)-(4.2). Then

B[V (Quu — ) o + [[u — Tl < CR* [ufpy1, (4.4)
IMe—1p = Ballo < Ch*|ulgya, (4.5)
where Qy, and I1;_; are defined in (4.3).
For any function ¢ € H*(T), the following trace inequality holds true:

lell2 < C (ht el + hrlIVelZ) - (4.6)
Lemma 4.1. Let u € [H*T1(Q)]9. Then we have
1V (Qru = Tiu) [l < CR*[ulyy1, 4.7)

where Qy, and 11y, are defined in (4.3).
Proof. Recall Quu = {Ilyu, 11}, u} and E,Ilu = {I;u, {Ilyu}}. Letting q =
Vw(Qpu—1IIxu) and using (2.2), the trace inequality (4.6) and inverse inequality yield
IV (Qru — Iiu)|[3
= ||V (Qpu — EpIlyu) |3
= (Vu(Qpu — Eulliu), q)
= Z <HZ+1U - {Hkll}, q- n>8T

TeTy
= Z <Hz+1u —u—{llfu—u},q- n>aT
TeTy
1/2 1/2
<o X npima i) (X hrlaliy)
TeTy TeET,
< Ch [l |V (Qpu — Teu) .
We complete the proof of the lemma. O
The differences of (4.1)-(4.2) and (1.8)-(1.9) give
(/,va(ﬁh - uh)7 vwv) + (vw(ﬁh - ph)7V) = 07 VV e Vh7 (4'8)
(4o — up, Vyq) =0, Vge P, 4.9)

Let v =ty — uy in (4.8) and ¢ = py, — py in (4.9). Subtracting (4.8) from (4.9) implies
(Vw(@, —up), V(g — up)) = 0. (4.10)
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Lemma 4.2. Let u € H*1(Q) and &, = {ig, W} € V), be the WG solution of (4.1)-
(4.2). Then we have
va(flh — flo)”o < Chk’u‘qul. (4.11)

Proof. For q € [Pyy1(T)]%?, using {Gg} = g — [To], [u] = 0, ||HZ+1u —ullor <
ITIxu — ul|sr, (2.2), (3.2), (4.6), (2.8) and (4.4), we have

> ({0}, q- n)yp
TeTh
= Z <((ﬁb - HZ-HU) — (g — Hku)) + (HZ-HU —u)
T

+<u—nku>+[ﬁo—u1,q-n>

orT

IN

1/2
<Z WY@y — Iy w) — (@0 — Ipw) |3y + 2{|Tu — w37 + 2] @ — uH?w)
T

1/2
« (X tlali)
T
< C(IIVu(@uu = @) llo + V2(h ! [TTu = uflo + |V (Mu — w)l)
+V2(h ™! [pu = ol + 20 [ Txu — ullo + 2(|V(ITju — 11)||0)) lallo
< Ch*|ulg11]lallo, (4.12)
where in the last but one step we inserted another II,u and used the inverse inequality

1/2

[TTgu — Gollor < ™2 ||Txu — Aol|r

instead of the trace inequality, to avoid the error estimate on ||V (u — )| (it can be
easily done too).
Let g = V(0 — 0g). Using (2.2) and (4.12), we have

IV (0n = 10) 15 = (Ve (an — o), q)

= > (@~ {0}, a- n)yr < Ch¥luliri]lallo,
TETy

which proves the lemma. O
Lemma 4.3. Let u € H*T1(Q). Then we have

IV (n —up)llo < ChF[ulks, (4.13)
In — prll < Ch*|ulgyq. (4.14)
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Proof. By (4.10) and (4.11), we have

(Vu uh — U-h uy, —uy))

= (Vu (@ — Bo) )
<V w(uh - uh)HoHVw(uh —19)llo
< ChF a1 ||V (T, — ag) o,

which implies (4.13). The estimate (4.14) follows from (4.8), (4.13) and (3.4) and we
proved the lemma.

Theorem 4.2. Let u € H*1(Q) N HY(Q) be the exact solution of (1.1) and (1.3). Let
uy € Vy, and py, € Py, be the finite element solution of (1.8)-(1.9). Then

IV (Ixu = up)llo < Ch*ufisq, (4.15)
ITg—1p — prllo < ChF|ujpys. (4.16)

Proof. By (4.4), (4.13) and (4.7), we have

[V (ITzu — ug)flo < [V (Hpu — Quu)llo + [Vw (Qru — ap)llo + |V (Tn — up)lo
< Ch¥|ulpy1,

which yields (4.15). The estimates (4.14) and (4.5) imply (4.16). We have finished the
proof of the theorem. O

5. Error estimate in the L2 norm

Consider
—,u,A’l,b + Vf = ﬁo — up in Q, (5.1)
V=0 in Q, (5.2)
=0 on 99, (5.3)

where 1y and uy, are the solutions in (4.1) and (1.8) respectively. Assume that the dual
problem (5.1)-(5.3) has the [H?(Q)]? x H'(Q)-regularity property in the sense that the
solution (v, ¢) € [H?(Q)]¢ x H'(Q2) and the following a priori estimate holds true:

wllvll2 + 1€l < Cllag — uy. (5.4)

Theorem 5.1. Let (up,pr) € Vj, x Py, be the solution of (1.8)-(1.9). Assume that (5.4)
holds true. Then, we have

[Teu — ug|| < CRFulpy. (5.5)



Divergence-Free Finite Element 165

Proof Let 4, = {1y, v,} € Vi, and &, € P, be the solution of the WG finite element
method (4.1)-(4.2) such that for all v = {v(,v;,} € V,and q € P,

(:U‘vw,lzbha va) + (vwgh’v(]) = (ﬁO - Uh,V(]), (56)
(%0, Vwa) = 0. (5.7)

Letting v = u, — Epuy € V,, in (5.6) and using (4.9) gives
1G9 — unl[§ = (WVwtn, Ve(an —up)). (5.8)
Letting v = v, € V}, in (4.8) and using (5.7) give
(Vw(iy —uy), Vipg) = 0. (5.9)
Using (5.8), (5.9) and (4.11), we have

[0 — upll§ = (1Vuw (P — ¥0), Ve, —uyp))
< CRF )2 |[ul g1 (5.10)

It follows from (5.10) and (5.4),
180 — apflo < A+ ulfir1- (5.1D)
The triangle inequality, (5.11) and (4.4) imply
M — sl < [[Teu — ol + [0 — wpllo < CH* || 41.

We have proved the theorem. O

6. Numerical experiments

In the numerical computation in 2D, the domain is 2 = (0,1) x (0,1). We choose
an f (depending on ) in (1.1) so that the exact solution of (1.1)-(1.3) is

" (2y — 6y? + 4y%) (2 — 223 + %)
—(2x — 622 +423)(y? — 23 +v*) )’
p=—22%+32% — z.

(6.1)

We compute the solution (6.1) on triangular grids shown in Fig. 1 by the Pj-
CDG/ P;,_1-WG mixed finite elements for k¥ = 1,2,3,4,5. The results are listed in Ta-
bles 1-5. The optimal order of convergence is achieved for all solutions in all norms.
From the data, we can see the method is pressure robust that the error is independent
of viscosity p.

We note that on some high level grids the computer round-off error exceeds the
truncation error, when p = 1079, in Tables 3-5.
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Grid 1: Grid 2: Grid 3:

Figure 1: The first three grids for the computation in Tables 1-5.

Table 1: The error and the computed order of convergence by the P; element for the solution (6.1) on
Fig. 1 meshes.

Grid | lu—wlo [O®) | JJu—wl [o®) | Lip—pollo | OR7)
By the P;-CDG/Py-WG elements, . = 1 in (1.1).

5 0.9385E-03 | 1.77 | 0.2850E-01 | 0.99 0.2115E-01 1.01
6 0.2498E-03 | 1.91 | 0.1418E-01 | 1.01 0.1067E-01 0.99
7 0.6409E-04 | 1.96 | 0.7064E-02 | 1.00 0.5369E-02 0.99
By the P,-CDG/Py-WG elements, 1 = 106 in (1.1).
5 0.9385E-03 | 1.77 | 0.2850E-01 | 0.99 0.2113E-07 1.01
6 0.2498E-03 | 1.91 | 0.1418E-01 | 1.01 0.1067E-07 0.99
7 0.6409E-04 | 1.96 | 0.7064E-02 | 1.00 0.5371E-08 0.99

Table 2: The error and the computed order of convergence by the P> element for the solution (6.1) on
Fig. 1 meshes.

Grid | lu—wlo [O®) ] JJu—wl [o®) | Lip—pllo | OR7)
By the P-CDG/P;-WG elements, p = 1 in (1.1).

4 | 0.1080E-03 | 0.00 | 0.7306E-02 | 0.00 | 0.1453E-01 | 0.00
0.1258E-04 | 3.10 | 0.1842E-02 | 1.99 | 0.4717E-02 | 1.62
6 | 0.1524E-05 | 3.04 | 0.4595E-03 | 2.00 | 0.1329E-02 | 1.83
By the P,-CDG/P;-WG elements, ;1 = 107 in (1.1).
4 | 0.1080E-03 | 3.12 | 0.7306E-02 | 1.92 | 0.1456E-07 | 1.13
0.1258E-04 | 3.10 | 0.1842E-02 | 1.99 | 0.4725E-08 | 1.62
6 | 0.1524E-05 | 3.04 | 0.4595E-03 | 2.00 | 0.1373E-08 | 1.78

91

u

We compute the 2D solution (6.1) again on slightly perturbed triangular grids
shown in Fig. 2 by the P,-CDG/P;_1-WG mixed finite elements for £ = 1,2,3,4,5.
The results are listed in Tables 6-10. The optimal order of convergence is achieved for
all solutions in all norms.
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Table 3: The error and the computed order of convergence by the Ps element for the solution (6.1) on

Fig. 1 meshes.
Grid | Ju—wilo | OC) | Jlu—wnll | OG") | [He1p —pollo | O(h7)
By the P3-CDG/P,-WG elements, p = 1 in (1.1).
4 0.7562E-05 | 3.89 | 0.6979E-03 | 2.85 0.1852E-02 2.57
5 0.4798E-06 | 3.98 | 0.8938E-04 | 2.97 0.2634E-03 2.81
6 0.3004E-07 | 4.00 | 0.1125E-04 | 2.99 0.3497E-04 2.91
By the P3-CDG/P,-WG elements, 1 = 107% in (1.1).
4 0.7562E-05 | 3.89 | 0.6979E-03 | 2.85 0.1929E-08 2.51
5 0.4798E-06 | 3.98 | 0.8938E-04 | 2.97 0.3937E-09 2.29
6 0.3004E-07 | 4.00 | 0.1125E-04 | 2.99 0.3334E-09 0.24

Table 4: The error and the computed order of convergence by the P, element for the solution (6.1) on

Fig. 1 meshes.
Grid | [lu—wifo [ O®) [ flu—wll [ O®) [ [isp —pollo | O
By the P;-CDG/P3-WG elements, p = 1 in (1.1).
3 | 0.1583E-04 | 4.49 | 0.8399E-03 | 3.59 | 0.7350E-03 | 3.40
4 | 0.5330E-06 | 4.89 | 0.5711E-04 | 3.88 | 0.5016E-04 | 3.87
5 | 0.1701E-07 | 4.97 | 0.3700E-05 | 3.95 | 0.3191E-05 | 3.97
By the P,-CDG/P3-WG elements, = 107% in (1.1).
3 | 0.1583E-04 | 4.49 | 0.8399E-03 | 3.59 | 0.8573E-09 | 3.18
4 | 0.5330E-06 | 4.89 | 0.5711E-04 | 3.88 | 0.4274E-09 | 1.00
5 | 0.1701E-07 | 4.97 | 0.3701E-05 | 3.95 | 0.4401E-09 | 0.00

Table 5: The error and the computed order of convergence by the Ps element for the solution (6.1) on

Fig. 1 meshes.
Grid | [lu—wifo [ O®) [ flu—wll [ O®) [ [isp —pollo | O
By the P5;-CDG/P;-WG elements, p = 1in (1.1).
2 | 0.6597E-04 | 4.15 | 0.2216E-02 | 3.40 | 0.1255E-02 | 3.16
3 | 0.1285E-05 | 5.68 | 0.8154E-04 | 4.76 | 0.4852E-04 | 4.69
4 | 0.2218E-07 | 5.86 | 0.2737E-05 | 4.90 | 0.1652E-05 | 4.88
By the P5-CDG/P;-WG elements, = 107% in (1.1).
2 | 0.6597E-04 | 4.15 | 0.2216E-02 | 3.40 | 0.1430E-08 | 3.00
3 | 0.1285E-05 | 5.68 | 0.8154E-04 | 4.76 | 0.3918E-09 | 1.87
4 | 0.2218E-07 | 5.86 | 0.2738E-05| 4.90 | 0.5148E-09 | 0.00
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Grid 1: Grid 2: Grid 3:

Figure 2: The first three grids for the computation in Tables 6-10.

Table 6: The error and the computed order of convergence by the P; element for the solution (6.1) on
Fig. 2 meshes.

Grid | [lu—wnfo [O®) [ fflu—will [O®) [I1p = pollo [ O")
By the P;-CDG/Py-WG elements, . = 1 in (1.1).

4 |0.1331E-02 | 1.74 | 0.3608E-01 | 0.95 | 0.1617E-01 | 1.13
5 | 0.3531E-03 | 1.91 | 0.1818E-01 | 0.99 | 0.7686E-02 | 1.07
6 | 0.9023E-04 | 1.97 | 0.9104E-02 | 1.00 | 0.3821E-02 | 1.01
By the P;-CDG/Py-WG elements, 1 = 107 in (1.1).
4 | 0.1331E-02 | 1.74 | 0.3608E-01 | 0.95 | 0.1617E-07 | 1.14
5 | 0.3531E-03 | 1.91 | 0.1818E-01 | 0.99 | 0.7692E-08 | 1.07
6 | 0.9023E-04 | 1.97 | 0.9104E-02 | 1.00 | 0.3836E-08 | 1.00

Table 7: The error and the computed order of convergence by the P> element for the solution (6.1) on
Fig. 2 meshes.

Grid | lu—wpllo [ OG") | lla—wsl | O(") | [Me_1p — pollo | O(")
By the P,-CDG/P;-WG elements, p = 1 in (1.1).

4 0.2849E-04 | 3.00 | 0.2592E-02 | 1.92 0.1695E-02 1.32
5 0.3518E-05 | 3.02 | 0.6589E-03 | 1.98 0.5933E-03 1.51
6 0.4381E-06 | 3.01 | 0.1657E-03 | 1.99 0.1728E-03 1.78
By the P»,-CDG/P;-WG elements, 1 = 10~% in (1.1).
4 0.2849E-04 | 3.00 | 0.2592E-02 | 1.92 0.1711E-08 1.32
5 0.3518E-05 | 3.02 | 0.6589E-03 | 1.98 0.6852E-09 1.32
6 0.4381E-06 | 3.01 | 0.1657E-03 | 1.99 0.3558E-09 0.95

In the 3D numerical computation, the domain is Q2 = (0,1) x (0,1) x (0,1). We
choose an f in (1.1) so that the exact solution is

—210(x — 1)222(y — 1)%y?(2 — 322 + 223)
u= 210(z — 1)222(y — 1)%y%(2 — 322 + 223) 7
210[(z — 322 + 223) (y% — y)? — (2 — 2)*(y — 3y* + 2¢%)](2? — 2)? (6.2)

p=—10(3y* — 25> — y).
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Table 8: The error and the computed order of convergence by the Ps element for the solution (6.1) on

Fig. 2 meshes.
Grid | Ju—wfo [ O() | flu—will | O®) [ |[T1p —pollo [ O(h")
By the P3-CDG/P,-WG elements, p = 1in (1.1).
3 0.1821E-04 | 3.31 | 0.1234E-02 | 2.56 0.1475E-02 2.76
4 0.1234E-05 | 3.88 | 0.1634E-03 | 2.92 0.1542E-03 3.26
5 0.7930E-07 | 3.96 | 0.2084E-04 | 2.97 0.1622E-04 3.25
By the P3-CDG/P,-WG elements, 1 = 107% in (1.1).
3 0.1821E-04 | 3.31 | 0.1234E-02 | 2.56 0.1570E-08 2.67
4 0.1234E-05 | 3.88 | 0.1634E-03 | 2.92 0.4175E-09 1.91
5 0.7930E-07 | 3.96 | 0.2084E-04 | 2.97 0.3651E-09 0.19

Table 9: The error and the computed order of convergence by the P; element for the solution (6.1) on

Fig. 2 meshes.

Grid | lu—wlo [ O®) | Jlu—wl [o®) | [Lip—pollo | OR7)
By the P;-CDG/P3;-WG elements, p = 1 in (1.1).
2 0.3561E-04 | 3.66 | 0.1743E-02 | 2.87 0.1885E-02 3.19
3 0.1193E-05 | 4.90 | 0.1090E-03 | 4.00 0.1854E-03 3.35
4 0.3911E-07 | 4.93 | 0.7003E-05 | 3.96 0.1422E-04 3.70
By the P;-CDG/P3-WG elements, 1 = 107% in (1.1).
2 0.3561E-04 | 3.66 | 0.1743E-02 | 2.87 0.1985E-08 3.11
3 0.1193E-05 | 4.90 | 0.1090E-03 | 4.00 0.5254E-09 1.92
4 0.3911E-07 | 4.93 | 0.7003E-05 | 3.96 0.4155E-09 0.34

Table 10: The error and the computed order of convergence by the Ps element for the solution (6.1) on

Fig. 2 meshes.
Grid | lu—wlo [ O®) | Jlu—wl [o®) | [Lip—pollo | OR7)
By the P5-CDG/P,-WG elements, = 1in (1.1).
2 0.3155E-05 | 5.79 | 0.1881E-03 | 4.80 0.1420E-03 4.88
3 0.5300E-07 | 5.90 | 0.6291E-05 | 4.90 0.4695E-05 4.92
4 0.1202E-08 | 5.46 | 0.3843E-06 | 4.03 0.1514E-06 4.95
By the P5-CDG/P,-WG elements, 1 = 107% in (1.1).
2 0.3155E-05 | 5.79 | 0.1881E-03 | 4.80 0.5111E-09 3.05
3 0.5299E-07 | 5.90 | 0.6289E-05 | 4.90 0.4639E-09 0.14
4 0.1197E-08 | 5.47 | 0.3832E-06 | 4.04 0.5125E-09 0.00
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Grid 1: Grid 2: Grid 3:

Figure 3: The first three tetrahedral grids for the computation in Tables 11-13.

Table 11: The error and the computed order of convergence by the P; element for the solution (6.2) on
Fig. 3 meshes.

Grid | lu—unflo [ O) | Jlu—wsll [O®) | IMe_1p — pollo | O)
By the P;-CDG/Py-WG elements, . = 1 in (1.1).

3 0.452E-01 | 0.91 | 0.564E+00 | 0.88 0.434E+00 2.25
4 0.137E-01 | 1.72 | 0.226E+00 | 1.32 0.108E+00 2.01
5 0.365E-02 | 1.91 0.971E-01 1.22 0.227E-01 2.25
By the P,-CDG/Py-WG elements, 1 = 1072 in (1.1).
3 0.568E-01 | 0.72 | 0.751E+00 | 0.64 0.635E-03 2.20
0.145E-01 | 1.97 | 0.235E+4+00 | 1.67 0.144E-03 2.14
5 0.371E-02 | 1.97 0.974E-01 1.27 0.260E-04 2.47

N

Table 12: The error and the computed order of convergence by the P, element for the solution (6.2) on
Fig. 3 meshes.

Grid | lu—unflo [ O®) [ Jlu—wsll [O®) [ IMe_1p = pollo | O)
By the P,-CDG/P;-WG elements, p = 1 in (1.1).

3 | 0.593E-02 | 3.08 | 0.172E+00 | 2.18 | 0.131E+00 | 2.03
4 | 0.570E-03 | 3.38 | 0.392E-01 | 2.14 | 0.231E-01 2.50
5 | 0.558E-04 | 3.35 | 0.923E-02 | 2.08 0.319E-03 6.18
By the P,-CDG/P;-WG elements, ;1 = 1072 in (1.1).
3 | 0.592E-02 | 3.09 | 0.172E+00 | 2.19 0.132E-03 2.03
0.646E-03 | 3.19 | 0.374E-01 | 2.20 0.177E-04 | 2.89
5 | 0.689E-04 | 3.23 | 0.908E-02 | 2.04 | 0.238E-05 2.90

N

We numerically compare the CDG-WG divergence-free finite element method with
an HDG divergence-free finite element method, in [5, (2.6)], in Table 14. The HDG
finite element method [5] adds a uy [Py (&;,)]¢ velocity space to the CDG velocity space,
where &), is the set of all triangles in the tetrahedral mesh 7,. And it also adds two
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Table 13: The error and the computed order of convergence by the P; element for the solution (6.2) on
Fig. 3 meshes.

Grid [ Ju—wllo [ O() [ [lu=wi]| [ O [ [Me_1p — pollo | O(R7)
By the P3-CDG/P,-WG elements, p = 1 in (1.1).

3 | 0.688E-03 | 3.90 | 0.353E-01 | 2.87 0.215E-01 3.66
0.427E-04 | 4.01 | 0.478E-02 | 2.89 0.117E-02 4.19
5 | 0.268E-05| 3.99 | 0.615E-03 | 2.96 0.220E-04 5.74
By the P;-CDG/P;-WG elements, = 1072 in (1.1).
3 | 0.701E-03 | 3.92 | 0.357E-01 | 2.86 0.247E-04 3.30
0.425E-04 | 4.04 | 0.477E-02 | 2.90 0.933E-06 4.72
5 | 0.267E-05| 3.99 | 0.614E-03 | 2.96 0.311E-07 4.91

N

N

Table 14: The error and the computed order of convergence for (6.2) on Fig. 3 meshes.

Grid | [[lu—wo | O(") | [Mi—1p —pollo | O(W) | doo-f.
By the P,-CDG/P,-WG elements, p = 1.
1 0.897E-01 0.0 0.653E+4+00 0.0 132
2 0.705E-01 0.3 0.142E-01 5.5 984
3 0.452E-01 0.9 0.434E+00 2.3 7584
4 0.137E-01 1.7 0.108E+00 2.0 59520
5 0.365E-02 1.9 0.227E-01 2.2 471552
By the P;-HDG method (2.6) in [5], u = 1.
1 0.872E-01 0.0 0.793E+00 0.0 276
2 0.877E-01 0.0 0.295E+01 0.0 1992
3 0.516E-01 0.8 0.635E+00 2.2 15072
4 0.122E-01 2.1 0.186E+00 1.8 117120
5 0.278E-02 2.1 0.413E-01 2.2 923136

Py(&,) Lagrange multiplier spaces, on the two sides of u; - n, to enforce the H(div)
continuity of the discrete velocity solution. Thus, the number of degrees of freedom,
i.e., the number of unknowns, of the HDG method [5] nearly doubles that of the CDG-
WG method proposed in this manuscript, cf. Table 14. The two methods are about
equally accurate, as shown in Table 14.
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