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Abstract. This paper proposes a discussion of the direct discontinuous Galerkin

(DDG) methods coupled with explicit-implicit-null time discretizations (EIN) for
solving the nonlinear diffusion equation ut = (a(u)ux)x. The basic idea of the EIN

method is to add and subtract two equal constant coefficient terms a1uxx (a1 =
a0 × maxu a(u)) on the right-hand side of the above equation, and then apply the

explicit-implicit time-marching method to the equivalent equation. The EIN method

does not require any nonlinear iterative solver while eliminating the severe time-
step restrictions typically associated with explicit methods. We present the stability

criterion of the EIN-DDG schemes for the simplified equation with periodic boundary

conditions via the Fourier method, where the first order and second order EIN-DDG
schemes are unconditionally stable when a0 ≥ 0.5 and the third order EIN-DDG

scheme is unconditionally stable under the condition a0 ≥ 0.54. Numerical exper-
iments show the stability and optimal orders of accuracy of our proposed schemes

with a relaxed time-step restriction and the appropriate coefficient a0 for both lin-

ear and nonlinear equations in one-dimensional and two-dimensional settings. Fur-
thermore, we also show that the computational efficiency of our EIN-DDG schemes

and explicit Runge-Kutta DDG (EX-RK-DDG) schemes for steady-state equations with

small viscosity coefficients to illustrate the effectiveness of the present methods.
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1. Introduction

Diffusion is a common phenomenon in nature and has been studied in areas such as

percolation, phase change, biochemistry, and population dynamics. It can be effectively

modeled using nonlinear diffusion equations. The numerical study of nonlinear diffu-

sion equations has attracted considerable attention from many scholars who are com-

mitted to developing higher order numerical methods with stability and convergence.

Although the explicit time-marching method is relatively straightforward to imple-

ment, its stability is constrained by the severe time-step τ = O(hk) for the k-th (k ≥ 2)
order partial differential equations (PDEs), which results in high computational costs

and renders the explicit scheme impractical. For example, under a strict CFL-like sta-

bility condition c0τ ≤ ǫ ≤ c1h
2, Liu and Wen [20] proved the third order explicit

Runge-Kutta time discretization with the alternating evolution discontinuous Galerkin

scheme is stable for linear convection-diffusion equations. The implicit time-marching

method can overcome the limitation of a small time-step and can be applied to any or-

der [14]. However, a fully implicit method is not always optimal for solving nonlinear

equations, as it necessitates the resolution of a non-symmetric, non-positively deter-

ministic, and nonlinear algebraic system at each time-step [6, 8, 13, 15, 17]. Jay [16]

employed the preconditioned linear iterative method to solve approximately the linear

systems of the simplified Newton method. However, the above linear system requires

computing and storing the Jacobian of nonlinear operators, and its fast solution re-

lies on an efficient preconditioner, which increases the difficulty of the implicit time-

marching method. In order to overcome such difficulties, the implicit-explicit (IMEX)

time-marching methods [1, 2, 12, 23, 24] have been proposed and treated the higher

order derivative terms implicitly and the rest of the terms explicitly. Such a treatment

permits a portion of the solution to be explicit, which is typically more efficient than

the fully implicit method. Nevertheless, due to each implicit stage requiring solving

a nonlinear system, the method may not apply to equations where both the convection

and diffusion terms are nonlinear.

To address the abovementioned issues, Douglas and Dupont [7] proposed and

adopted a method to guarantee the stability of nonlinear diffusion equations on a rect-

angular domain. Later, Duchemin and Eggers [9] proposed and referred to that method

as explicit-implicit-null method. We take the one-dimensional nonlinear diffusion equa-

tion as an example to illustrate the idea of the EIN method. Adding and subtracting the

equal term a1uxx on the right-hand side of the equation ut = (a(u)ux)x, we obtain

ut = (a(u)ux)x − a1uxx︸ ︷︷ ︸
T1

+ a1uxx︸ ︷︷ ︸
T2

, a1 = a0 ×max
u

a(u), (1.1)

where a(u) ≥ 0 is bounded and smooth, a0 is a stabilization parameter and is con-

stant. We treat the term T1 explicitly and the term T2 implicitly. Here, the EIN method

does not require any nonlinear iterative solver while eliminating the typically severe

time-step restrictions, which combines the advantages of both explicit and implicit

methods. Recently, the EIN methods coupled with spatial discretizations were success-
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fully applied to assure the stability for many problems, such as the two-dimensional

radiation hydrodynamics equations with the high order explicit Lagrangian finite vol-

ume scheme [18], the convection-diffusion equations and the convection-dispersion

equations with spectral collocation schemes [28], the high order dissipative and dis-

persive equations with the finite difference methods and the LDG methods [27], the

nonlinear diffusion equations with the LDG methods [31], the Cahn-Hilliard equations

with the LDG methods [25]. For more previous work on the EIN methods, please

see [10,11,26,32,39].

However, the LDG method requires complex manipulation of the PDEs, such as

introducing auxiliary variables and rewriting the original equations as a first order sys-

tem, which leads to high computational costs. The DDG method is based on the direct

weak formulation for solutions of the equations under consideration, initially proposed

by Liu and Yan [21] for linear diffusion equations, without rewriting the equation into

a first order system. That method is necessarily identified by an appropriate selection of

numerical flux to be used as derivatives of the solution at the cell interface. The numer-

ical flux formula is simple, compact, consistent, and conservative. The most significant

features of the DDG method are its low storage requirements and excellent computa-

tional performance. In recent studies, the DDG method has been successfully applied to

convection-diffusion equations [22, 29, 33], the Korteweg–de Vries equation [36], the

Navier-Stokes equation [4,37,38] and compressible turbulent flows [34,35] and so on.

The main purpose of this paper is to develop the DDG method with EIN time-

marching method for the nonlinear diffusion equations. By the aid of the Fourier

method, we present the first order to third order EIN-DDG schemes and their stabil-

ity and optimal orders of accuracy under the relaxed time-step restriction and suitable

stabilization parameter a0. In addition, to demonstrate the advantages of our schemes,

we compare the computational efficiency required to reach the steady state for the

EX-RK-DDG scheme and the EIN-DDG scheme for convection-diffusion equations with

small viscosity coefficients. Although our analysis is based on a one-dimensional diffu-

sion equation, numerical experiments demonstrate that the conclusions can also be ex-

tended to the one-dimensional and two-dimensional linear and nonlinear convection-

diffusion equations.

The rest of the paper is organized as follows. Section 2 presents the DDG method

with the EIN time-marching methods for diffusion equation. Section 3 is devoted to

analyzing the stability of the EIN-DDG schemes for the linear diffusion equation via

the Fourier method. In Section 4, numerical tests are given to verify the stability, the

optimal orders of accuracy, and the computational efficiency of the EIN-DDG schemes

for the one-dimensional and two-dimensional linear and nonlinear equations. Finally,

the concluding remarks are given in Section 5.

2. The numerical schemes

In this section, we present the discontinuous finite element space and the semi-

discrete DDG scheme, and introduce the EIN Runge-Kutta time discretization methods.
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For simplicity of analysis, we consider the one-dimensional linear diffusion equation

ut = auxx, x ∈ Ω× (0, T ) (2.1)

with initial condition u(x, 0) = sin(αx). Similar to the Eq. (1.1), we can obtain the

following equivalent form of (2.1):

ut = (a− a1)uxx︸ ︷︷ ︸
T1

+ a1uxx︸ ︷︷ ︸
T2

, a1 = a0 × a, (2.2)

where a0 is the stabilization parameter. We will discretize the term T1 explicitly and

the term T2 implicitly in (2.2).

2.1. The discontinuous finite element space

Let

Th =
{
Ij = (xj− 1

2

, xj+ 1

2

)Nj=1

}

be a uniform partition of Ω = (xL, xR), with mesh size h := xj+1/2 − xj−1/2, where

x1/2 = xL and xN+1/2 = xR are two boundary endpoints. Then, we can define the

following discontinuous finite element space:

Vh =
{
v ∈ L2(I) : v|Ij ∈ Pk(Ij), ∀j = 1, . . . , N

}
, (2.3)

where Pk(Ij) denotes the space of polynomials up to degree k on cell Ij, where k is

a non-negative integer. For any u ∈ Vh, there are two traces at an element interface

xj+1/2, j = 0, . . . , N , namely

u+
j+ 1

2

= lim
ǫ→0+

u
(
xj+ 1

2

+ ǫ
)
, u−

j+ 1

2

= lim
ǫ→0−

u
(
xj+ 1

2

+ ǫ
)
,

and we denote its jump and average as

[u]j+ 1

2

= u+
j+ 1

2

− u−
j+ 1

2

, {u}j+ 1

2

=
1

2

(
u+
j+ 1

2

+ u−
j+ 1

2

)
.

2.2. The spatial discretizations

The semi-discrete DDG scheme of (2.2) is to find the unique approximation solution

u ∈ Vh, such that for arbitrary test functions v ∈ Vh, we have

(ut, v)j = (a− a1)
(
ûxv|

j+ 1

2

j− 1

2

− (ux, vx)j

)

︸ ︷︷ ︸
T1

+ a1

(
ûxv|

j+ 1

2

j− 1

2

− (ux, vx)j

)

︸ ︷︷ ︸
T2

, (2.4)

where (·, ·)j denotes the inner product in L2(Ij), and

ûxv|
j+ 1

2

j− 1

2

= (ûx)j+ 1

2

v−
j+ 1

2

− (ûx)j− 1

2

v+
j− 1

2

.
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Here vj±1/2 denote values v at x = xj±1/2, with the numerical flux term ûx defined as

ûx =
β0
h
[u] + {ux}+ β1h[uxx], (2.5)

where β0 and β1 are coefficients to be chosen to ensure the stability of the scheme.

In our work, we take β0 = 1 ∼ 4 and β1 = 1/12 according to the work of Liu et

al. [3, 19, 21]. It is important to note that the above numerical flux is both consistent

and conservative, i.e., ûx = ux for any smooth u and ûx is single-valued.

Remark 2.1. For the nonlinear diffusion equation (1.1), where w ∈ Vh is taken as the

test function, the DDG scheme is defined as follows:

(ut, w)j =
(
â(u)uxw|

j+ 1

2

j− 1

2

− (a(u)ux, wx)j

)
− a1

(
ûxw|

j+ 1

2

j− 1

2

− (ux, wx)j

)

︸ ︷︷ ︸
T1

+ a1

(
ûxw|

j+ 1

2

j− 1

2

− (ux, wx)j

)

︸ ︷︷ ︸
T2

,

where

â(u)ux =
β0
h
[b(u)] + {b(u)x}+ β1h [b(u)xx] , b(u) =

∫ u

0
a(s)ds.

2.3. The temporal discretizations

This subsection briefly introduces the EIN RK method used in this paper. The semi-

discrete DDG scheme can be expressed in the following form:

du

dt
= L (t, u) + N (t, u) =: R(t, u), (2.6)

where L (t, u) is derived from T2 in (2.4) and is treated implicitly, whereas N (t, u)
is derived from T1 in (2.4) and is treated explicitly, and R(t, u) is the residual. The

general s-stage EIN RK time-marching scheme is employed to solve the Eq. (2.2) whose

solution advanced from time tn to tn+1 = tn + τ is given by

un,1 = un,

un,i = un + τ
i∑

j=1

aijL
(
tjn, u

n,j
)
+ τ

i−1∑

j=1

âijN
(
tjn, u

n,j
)
, 2 ≤ i ≤ s+ 1,

un+1 = un + τ

s+1∑

i=1

biL
(
tin, u

n,i
)
+ τ

s+1∑

i=1

b̂iN
(
tin, u

n,i
)
,

(2.7)

where τ is the time-step, un,i denotes the intermediate stages,

ci =
i∑

j=1

aij =
i−1∑

j=1

âij, 2 6 i 6 s+ 1,
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and tjn = tn + cjτ . Denote

A = (aij), Â = (âij) ∈ R
(s+1)×(s+1),

b
⊤ = [b1, . . . , bs+1], b̂

⊤
= [b̂1, . . . , b̂s+1], c

⊤ = [0, c2, . . . , cs+1].

The general s-stage EIN RK scheme can be expressed as the Butcher tableau as follows:

c A Â

b
⊤

b̂
⊤ .

In this paper, we consider the following three specific EIN RK time discretizations:

– First order EIN RK scheme in [1] :

0 0 0 0 0

1 0 1 1 0

0 1 1 0

. (2.8)

– Second order EIN RK scheme in [31]:

0 0 0 0 0 0 0
1

2
0

1

2
0

1

2
0 0

1
1

2
0

1

2
0 1 0

1

2
0

1

2
0 1 0

. (2.9)

– Third order EIN RK scheme in [1]:

0 0 0 0 0 0 0 0 0 0 0
1

2
0

1

2
0 0 0

1

2
0 0 0 0

2

3
0

1

6

1

2
0 0

11

18

1

18
0 0 0

1

2
0 −

1

2

1

2

1

2
0

5

6
−
5

6

1

2
0 0

1 0
3

2
−
3

2

1

2

1

2

1

4

7

4

3

4
−
7

4
0

0
3

2
−
3

2

1

2

1

2

1

4

7

4

3

4
−
7

4
0

. (2.10)
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The second order EIN RK scheme (2.9) we consider is a modification of the second

order scheme given by [5]

0 0 0 0 0 0 0
µ

2

µ

2
0 0

µ

2
0 0

1
1

2
0

1

2

µ− 1

µ

1

µ
0

1

2
0

1

2

µ− 1

µ

1

µ
0

, (2.11)

where µ 6= 0. Note, at the first stage, the discretization of L (t, u) in (2.9) is im-

plicit, whereas scheme (2.11) discretizes L (t, u) explicitly, thus the stability of the

scheme (2.9) is better than that of the scheme (2.11). In addition, the third order EIN

RK scheme (2.10) is a four-stage, third order, L-stable, singly diagonally implicit RK

method, coupled with a four-stage, third order explicit RK method. For more detailed

time discretization methods, please see [1,2].

3. Stability analysis

In this section, we use the standard Fourier analysis to analyze the stability of the

proposed EIN-DDG schemes. We would like to investigate how to choose a0 so that the

EIN-DDG schemes are unconditionally stable.

Given that we have performed explicit and implicit treatments of the two equal

terms in Eq. (2.2), it can be concluded that a larger a0 would lead to more signifi-

cant errors. However, a minimal value of a0 cannot be used to maintain the proposed

scheme’s stability. Thus, our study’s objective is to investigate the threshold value of

parameter a0 that ensures the stability of our EIN-DDG schemes. Since the L2-norm of

the exact solution to the Eq. (2.1) does not increase in time, we can obtain the stability

condition of the EIN-DDG scheme in the following lemma [27].

Lemma 3.1. If G is uniformly diagonalizable and |λG| ≤ 1 holds for all ξ = αh ∈ [−π, π],
where λG is the spectral radius of G, then the EIN-DDG scheme is stable.

3.1. First order EIN-DDG scheme

Now, with the aid of the Fourier method, we give the stability result of the first

order EIN-DDG scheme in the following theorem.

Theorem 3.1. If a0 > 0.5, then the first order EIN-DDG scheme is unconditionally stable.

Proof. By choosing the Lagrangian polynomial Lj(x) = 1 as the basis function, we

can express the numerical solution as u(x, t)|Ij = ujLj(x), 1 ≤ j ≤ N. Taking v = 1
in (2.4), we have

(uj)t =
1

h2
(
(a− a1)(β0uj−1 − 2β0uj + β0uj+1) + a1(β0uj−1 − 2β0uj + β0uj+1)

)
. (3.1)
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Note, when k = 0, the numerical flux (2.5) reduces to ûx = β0[u]/h.

We make an ansatz of the form uj = ûje
iαxj , i2 = −1, and substitute this into (3.1),

then obtain

(ûj)t =
1

h2
(
(a− a1)(β0e

−iαh − 2β0 + β0e
iαh) + a1(β0e

−iαh − 2β0 + β0e
iαh)

)
ûj. (3.2)

When this equality is combined with the EIN time discretization (2.8), it gives

ûn+1
j = Gûnj ,

where G is given by

G = 1 + 2β0 (1− a0) aλ(cos ξ − 1)

+ 2β0a0aλ(cos ξ − 1)
1 + 2β0(1− a0)aλ(cos ξ − 1)

1− 2β0a0aλ(cos ξ − 1)

= 1 +
2β0aλ(cos ξ − 1)

1− 2β0a0aλ(cos ξ − 1)
, (3.3)

and λ = τ/h2. By applying Lemma 3.1, we have
∣∣∣∣1 +

2β0aλ(cos ξ − 1)

1− 2β0a0aλ(cos ξ − 1)

∣∣∣∣ ≤ 1, (3.4)

i.e., 



a0 >
1

2β0aλ(cos ξ − 1)
,

(2a0 − 1)β0aλ(cos ξ − 1) ≤ 1,

2β0aλ(cos ξ − 1) ≤ 0.

Then we can conclude that a0 ≥ 0.5. So, we completed the proof of this theorem.

3.2. Second order and third order EIN-DDG schemes

In this subsection, taking the third order EIN-DDG scheme as an example, we can

also use the Fourier analysis to obtain the stability result.

Similarly, we define the Lagrangian nodal basis polynomials as

Ls
j(x) =

2∏

l=0
l 6=s

(x− xlj)

(xsj − xlj)
, 0 ≤ s ≤ 2, 1 ≤ j ≤ N,

where the grid points are defined as xsj = xj +((s− 1)/3)h, and the numerical solution

u(x, t) inside each cell Ij can be represented as

u(x, t)|Ij =

2∑

l=0

ulj(t)L
l
j(x).
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Here we choose the point values of the solution u(xsj , t) inside cell Ij as the degree of

freedom, denoted by usj(t), 0 ≤ s ≤ 2, 1 ≤ j ≤ N .

By taking the test functions v as Ls
j(x), 0 ≤ s ≤ 2, 1 ≤ j ≤ N , and inverting the

small 3× 3 mass matrix, we can rewrite the DDG scheme (2.4) as

(uj)t =
1

h2
(
(a− a1)(Auj−1 +Buj + Cuj+1) + a1(Auj−1 +Buj +Cuj+1)

)
, (3.5)

where uj = (u0j (t), u
1
j (t), u

2
j (t))

⊤ and the specific form of the matrices defined as

A =




a11 a12 a13
a21 a22 a23
a31 a32 a33


 , B =




b11 b12 b13
b21 b22 b23
b31 b32 b33


 , C =




c11 c12 c13
c21 c22 c23
c31 c32 c33


 ,

a11 =
23

16
(−4 + β0 + 24β1) , a12 =

1

24
(414 − 115β0 − 1656β1) ,

a13 =
1

16
(−184 + 115β0 + 552β1) , a21 =

9

16
(4− β0 − 24β1) ,

a22 =
3

8
(−18 + 5β0 + 72β1) , a23 =

9

16
(8− 5β0 − 24β1) ,

a31 =
1

16
(16− β0 − 24β1) , a32 =

1

24
(−18 + 5β0 + 72β1) ,

a33 =
1

16
(8− 5β0 − 24β1) , b11 =

3

8
(−6− 19β0 − 88β1) ,

b12 =
1

12
(−18 + 55β0 + 792β1) , b13 =

3

8
(10 − 3β0 − 88β1) ,

b21 =
3

8
(42 + 9β0 + 72β1) , b22 =

3

4
(−42− 5β0 − 72β1) ,

b23 =
9

8
(14 + 3β0 + 24β1) , b31 =

3

8
(10 − 3β0 − 88β1) ,

b32 =
1

12
(−18 + 55β0 + 792β1) , b33 =

3

8
(−6− 19β0 − 88β1) ,

c11 =
1

16
(8− 5β0 − 24β1) , c12 =

1

24
(−18 + 5β0 + 72β1) ,

c13 =
1

16
(16 − β0 − 24β1) , c21 =

9

16
(8− 5β0 − 24β1) ,

c22 =
3

8
(−18 + 5β0 + 72β1) , c23 =

9

16
(4− β0 − 24β1) ,

c31 =
1

16
(−184 + 115β0 + 552β1) , c32 =

1

24
(414 − 115β0 − 1656β1) ,

c33 =
23

16
(−4 + β0 + 24β1) .

(3.6)

We make an ansatz of the form



u0j(t)

u1j(t)

u2j(t)


 =




û0j (t)

û1j (t)

û2j (t)


 eiαxj , i2 = −1. (3.7)
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Denote ûj = (û0j (t), û
1
j (t), û

2
j (t))

⊤. By substituting Eq. (3.7) into Eq. (3.5), we can

obtain

(ûj)t = Ĝ(α, h)ûj , (3.8)

which Ĝ(α, h) is given by

Ĝ(α, h) =
1

h2
(
(a− a1)(Ae

−iαh +B + Ceiαh) + a1(Ae
−iαh +B +Ceiαh)

)
, (3.9)

where the matrices A,B and C are defined in (3.6).

By using (2.7) and (3.8), we can get

û
n+1
j = Gû

n
j ,

where G is the amplification matrix and is given by

G = I +GN

5∑

l=1

b̂lMl +GL

5∑

l=1

blMl, (3.10)

where

M1 = I,

Ms = (I − assGL )−1

(
I +GN

s−1∑

l=1

âslMl +GL

s−1∑

l=1

aslMl

)
, 2 ≤ s ≤ 5,

GL = a0a
τ

h2
(Ae−iαh +B + Ceiαh),

GN = a (1− a0)
τ

h2
(Ae−iαh +B + Ceiαh).

Due to the complexity of the formula for the amplification matrix G in (3.10), we

will try to obtain the threshold value of a0 numerically. In the following, we briefly

show the specific procedure. Note, the amplification matrix G is a function of the

variables ξ, λ, a, a0, β0, β1. The stability region is defined as a region of the positive real

(a0, λ)-plane such that |λG| ≤ 1 according to the Lemma 3.1. However, the spectral

radius of the amplification matrix in experiments may be larger than one due to round-

off errors. Thus, we relax the condition in Lemma 3.1 by requiring that the spectral

radius satisfies |λG| ≤ 1 + 10−10. In order to determine the boundary of the stable

region, we take λ = 10θ and a0 = 10θ, where the variable θ represents a series of

discrete values, each separated by a distance of 0.01, ranging from −10 to 10, for any

fixed a, β0, β1 and all discrete values of ξ ∈ [−π, π]. Here, we take β0 = 2 and β1 = 1/12,

which also applies to the second order EIN-DDG scheme. Fig. 1 indicates the stability

of the third order EIN-DDG scheme.

We find that the lower bound of the parameter a0 to ensure the unconditional sta-

bility is 0.54 for the third order EIN-DDG scheme. Similarly, we can obtain that the

threshold value of a0 is 0.5 for the second order EIN-DDG scheme. Here, we omit the

details.
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Figure 1: The stability region of the third EIN-DDG scheme corresponds to a0 and λ for Eq. (2.2). The
scheme is stable when a0 and λ are in the black region.

Remark 3.1. Although our stability analysis is based on a linear model, numerical

experiments demonstrate that the above results apply to nonlinear models. We omit

details here to save space, see the numerical experiments in Section 4.

Remark 3.2. The above stability results for the one-dimensional case can be extended

to the multidimensional case through a similar stability analysis. For 2D numerical

results, please refer to Section 4.

Remark 3.3. It should be noted that the threshold for the stabilization parameter a0 is

strongly related to the specific EIN time discretization rather than the spatial discretiza-

tion method. Therefore, the constant a0 = 0.5 and a0 = 0.54 may be invalid if we use

other EIN time discretization methods. For example, we cannot obtain the threshold

value a0 = 0.5 and a0 = 0.54 for our EIN-DDG schemes by using the time discretization

in [30].

4. Numerical experiments

In this section, we numerically verify the stability and accuracy orders of the EIN-

DDG schemes for both one- and two-dimensional linear and nonlinear equations. Ad-

ditionally, we compare the computational efficiency of the EX-RK-DDG and EIN-DDG

schemes in reaching the steady state for convection-diffusion equations.

For the spatial discretization, we take piecewise constant, linear, and quadratic

polynomials for the first order, second order, and third order EIN-DDG schemes, re-

spectively. The equations with periodic boundary conditions are considered unless oth-

erwise specified. We adopt the Lax-Friedrichs numerical flux for the convection part,

and take β0 = 1 and β1 = 1/12 for the first order EIN-DDG scheme, and take β0 = 2 and

β1 = 1/12 in the numerical flux (2.5) for the second order and third order EIN-DDG

schemes.
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4.1. The stability and accuracy test

This subsection presents the numerical verification of the stability and the orders of

accuracy of the proposed EIN-DDG schemes for linear and nonlinear equations in both

one-dimensional and two-dimensional cases. We illustrate the smallest a0 to assure the

stability of the first order, second order, and third order EIN-DDG schemes as 0.5, 0.5,

and 0.54, respectively. In this subsection, we take τ = h and the final time T = 1 in all

cases unless otherwise stated.

4.1.1. One-dimensional numerical tests

Example 4.1. We consider the one-dimensional diffusion equation

{
ut = auxx, x ∈ [−π, π],

u(x, 0) = sin(x)
(4.1)

with the exact solution

u(x, t) = e−at sin(x). (4.2)

The L2 errors and orders of accuracy for this equation with the parameter a = 1.0
are listed in Table 1. When a0 ≥ 0.5, the first order and second order EIN-DDG schemes

Table 1: The L
2 errors and orders of accuracy for the one-dimensional diffusion equation.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

320 3.70E− 03 − 3.70E− 03 − 1.11E− 01 −

640 1.85E− 03 1.00 1.85E− 03 1.01 5.80E− 02 0.93

k = 0 1280 9.25E− 04 1.00 9.24E− 04 1.00 2.97E− 02 0.97

2560 4.63E− 04 1.00 4.62E− 04 1.00 1.50E− 02 0.98

5120 1.77E+ 01 -15.23 2.31E− 04 1.00 7.56E− 03 0.99

a0 = 0.49 a0 = 0.5 a0 = 10

40 6.61E− 04 − 6.79E− 04 − 1.12E− 01 −

80 1.67E− 04 1.99 1.71E− 04 1.99 4.37E− 02 1.36

k = 1 160 4.39E− 05 1.92 4.28E− 05 2.00 1.44E− 02 1.60

320 8.82E− 05 -1.01 1.07E− 05 2.00 4.25E− 03 1.76

640 2.83E− 02 -8.33 2.68E− 06 2.00 1.16E− 03 1.88

a0 = 0.53 a0 = 0.54 a0 = 10

40 5.35E− 05 − 3.39E− 05 − 4.35E− 02 −

80 1.39E− 05 1.95 4.22E− 06 3.01 1.12E− 02 1.96

k = 2 160 8.89E− 06 0.64 4.99E− 07 3.08 2.20E− 03 2.35

320 4.01E− 05 -2.17 6.44E− 08 2.96 3.58E− 04 2.62

640 6.58E− 03 -7.36 8.06E− 09 3.00 5.12E− 05 2.80
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are observed to be stable and achieve optimal orders of accuracy in both space and

time. Obviously, these two schemes are unstable for the case of a0 = 0.49. Additionally,

the third order EIN-DDG scheme can obtain optimal orders of accuracy if a0 ≥ 0.54,

whereas the simulation quality deteriorates with mesh refinements if a0 = 0.53. Note

that increasing a0 results in more significant errors. The simulation results coincide

with the theory.

Example 4.2. We compute the viscous Burgers’ equation with a source term

{
ut + uux = auxx + g(x, t), x ∈ [−π, π],

u(x, 0) = sin(x),
(4.3)

where g(x, t) = e−2at sin(2x)/2, the exact solution to the equation is given by (4.2).

The parameter a is taken as 1.0, and the L2 errors and orders of the accuracy of the

three schemes for Eq. (4.3) are shown in Table 2. Our proposed EIN-DDG schemes can

still achieve stability and optimal error accuracy when a0 exceeds the corresponding

threshold. The simulation results for the Eq. (4.3) are similar to those for the Eq. (4.1),

and thus are not detailed here.

Fig. 2 shows the L2 errors of the second order and third order EIN-DDG schemes

for solving the viscous Burgers’ equation (4.3) with a = 1. We take τ = 0.1 and T = 20.

Table 2: The L
2 errors and orders of accuracy for the one-dimensional viscous Burgers’ equation.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

320 4.15E− 03 − 4.10E− 03 − 1.08E− 01 −

640 2.07E− 03 1.00 2.04E− 03 1.00 5.68E− 02 0.93

k = 0 1280 1.03E− 03 1.00 1.02E− 03 1.00 2.90E− 02 0.97

2560 7.03E− 04 0.56 5.09E− 04 1.00 1.47E− 02 0.98

5120 NaN NaN 2.55E− 04 1.00 7.39E− 03 0.99

a0 = 0.49 a0 = 0.5 a0 = 10

40 7.88E− 04 − 7.17E− 04 − 1.11E− 01 −

80 2.20E− 04 1.84 1.77E− 04 2.02 4.34E− 02 1.36

k = 1 160 1.26E− 04 0.80 4.40E− 05 2.01 1.42E− 02 1.61

320 6.63E− 04 -2.40 1.10E− 05 2.00 4.20E− 03 1.76

640 2.06E− 01 -8.28 2.75E− 06 2.00 1.14E− 03 1.88

a0 = 0.53 a0 = 0.54 a0 = 10

40 9.15E− 05 − 4.20E− 05 − 4.31E− 02 −

80 2.69E− 05 1.77 5.01E− 06 3.07 1.11E− 02 1.96

k = 2 160 1.91E− 05 0.50 5.66E− 07 3.15 2.17E− 03 2.35

320 8.36E− 05 -2.13 7.35E− 08 2.94 3.53E− 04 2.62

640 1.37E− 02 -7.36 9.20E− 09 3.00 5.04E− 05 2.81
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(b) Third order, a0 = 0.54

Figure 2: The L
2 errors of the second and third order EIN-DDG schemes for solving (4.3), where a = 1,

the final time T = 20, and time-step is taken as τ = 0.1.

As the mesh is refined, the L2 errors of the second order scheme reach an exponential

convergence rate, while the time-step τ remains independent of the mesh size h for the

third order scheme.

Example 4.3. We consider the nonlinear convection-diffusion equation

{
ut + uux = (a(u)ux)x + f(x, t), x ∈ [−π, π],

u(x, 0) = sin(x),
(4.4)

where the diffusion coefficient is a(u) = u2 + 2, the source term is

f(x, t) =
1

4

(
4 cos(x+ t) + 9 sin(x+ t) + 2 sin(2(x+ t))− 3 sin(3(x+ t))

)
,

and the exact solution of Eq. (4.4) is u(x, t) = sin(x+ t).
In this example, we take a1 as a0 maxun{(un)2 + 2}, where un is the value of the

numerical solution at time level tn. The numerical results of the three schemes with

different a0 are listed in Table 3. Even though both the convection and diffusion terms

are nonlinear, the first order and second order EIN-DDG schemes remain stable and

achieve optimal orders of accuracy if a1 ≥ 0.5maxun{(un)2 + 2}. The third order

EIN-DDG scheme is stable and can achieve optimal error accuracy under the condition

a1 ≥ 0.54maxun{(un)2 + 2}. Similarly, the results with a0 = 0.49 and a0 = 0.53 show

instability.

4.1.2. Two-dimensional numerical tests

Example 4.4. We consider the two-dimensional diffusion equation

ut = ∆u, (x, y) ∈ (−π, π)2 (4.5)
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Table 3: The L
2 errors and orders of accuracy for the one-dimensional nonlinear convection-diffusion equa-

tion.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

640 1.12E− 02 − 1.14E− 02 − 1.86E− 01 −

1280 5.62E− 03 1.00 5.71E− 03 1.00 9.65E− 02 0.94

k = 0 2560 2.81E− 03 1.00 2.86E− 03 1.00 4.93E− 02 0.97

5120 1.41E− 03 1.00 1.43E− 03 1.00 2.49E− 02 0.98

10240 5.45E− 03 -1.95 7.15E− 04 1.00 1.25E− 02 0.99

a0 = 0.49 a0 = 0.5 a0 = 10

160 3.66E− 04 − 3.62E− 04 − 9.60E− 02 −

320 9.54E− 05 1.94 9.47E− 05 1.93 3.44E− 02 1.48

k = 1 640 2.38E− 05 2.00 2.36E− 05 2.01 1.06E− 02 1.70

1280 8.12E− 06 1.55 5.89E− 06 2.00 2.99E− 03 1.83

2560 NaN NaN 1.48E− 06 2.00 7.99E− 04 1.90

a0 = 0.53 a0 = 0.54 a0 = 10

320 1.61E− 06 − 1.66E− 06 − 7.26E− 03 −

640 2.02E− 07 2.99 2.26E− 07 2.88 1.29E− 03 2.49

k = 2 1280 2.55E− 08 2.99 2.85E− 08 2.98 1.98E− 04 2.70

2560 3.52E− 09 2.86 4.01E− 09 2.83 2.83E− 05 2.81

5120 NaN NaN 4.57E− 10 3.13 3.64E− 06 2.96

with the initial condition u(x, y, 0) = sin(x + y). This equation has an exact solution

u(x, y, t) = e−2t sin(x + y). In Table 4, we present a mesh refinement study from 3202

to 51202 grid points to verify the stability of the first order EIN-DDG scheme for the

case of a0 ≥ 0.5, as well as the stability of the second order and third order EIN-DDG

schemes when a0 ≥ 0.5 and a0 ≥ 0.54, respectively. As expected, the errors for a0 = 10
are larger, and the numerical order of accuracy converges towards the asymptotic value

more slowly with mesh refinements than in the case of a0 = 0.54.

Example 4.5. We compute the two-dimensional linear convection-diffusion equation

ut + c(ux + uy) = a(uxx + uyy), (x, y) ∈ [−π, π]2 (4.6)

with c = a = 1, the initial condition u(x, y, 0) = sin(x+ y). The equation has an exact

solution

u(x, y, t) = e−2at sin(x+ y − 2ct).

In Table 5, we display the stability and orders of the accuracy of the EIN-DDG schemes

for the convection-diffusion equation (4.6) with different a0. The simulations of this

equation are similar to those of Eq. (4.5) and are therefore not described in detail here.
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Table 4: The L
2 errors and orders of accuracy for the two-dimensional diffusion equation.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

320 1.88E− 03 − 1.88E− 03 − 6.90E− 02 −

640 9.40E− 04 1.00 9.39E− 04 1.00 3.53E− 02 0.97

k = 0 1280 4.70E− 04 1.00 4.70E− 04 1.00 1.78E− 02 0.99

2560 2.36E− 04 1.00 2.35E− 04 1.00 8.92E− 03 1.00

5120 5.26E+ 01 -17.77 1.17E− 04 1.00 4.46E− 03 1.00

a0 = 0.49 a0 = 0.5 a0 = 10

120 7.38E− 05 − 4.39E− 05 − 2.11E− 02 −

140 8.04E− 05 -0.56 3.25E− 05 1.96 1.66E− 02 1.55

k = 1 160 8.58E− 05 -0.48 2.49E− 05 1.98 1.35E− 02 1.57

180 9.56E− 05 -0.92 1.97E− 05 2.01 1.12E− 02 1.57

200 1.11E− 04 -1.40 1.59E− 05 2.05 9.48E− 03 1.56

a0 = 0.53 a0 = 0.54 a0 = 10

120 1.08E− 05 − 2.74E− 06 − 6.29E− 03 −

140 1.10E− 05 -0.11 1.68E− 06 3.18 4.51E− 03 2.15

k = 2 160 1.31E− 05 -1.33 1.15E− 06 2.81 3.36E− 03 2.20

180 1.35E− 05 -0.24 7.98E− 07 3.13 2.58E− 03 2.24

200 1.58E− 05 -1.53 5.95E− 07 2.79 2.04E− 03 2.25

Table 5: The L
2 errors and orders of accuracy for the two-dimensional linear convection-diffusion equation.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

160 1.24E− 02 − 1.23E− 02 − 1.70E− 01 −

320 6.11E− 03 1.02 6.06E− 03 1.02 9.39E− 02 0.86

k = 0 640 3.02E− 03 1.01 3.00E− 03 1.02 4.85E− 02 0.95

1280 1.50E− 03 1.01 1.49E− 03 1.01 2.45E− 02 0.99

2560 2.56E− 02 -4.09 7.44E− 04 1.00 1.23E− 02 1.00

a0 = 0.49 a0 = 0.5 a0 = 10

120 1.03E− 03 − 5.90E− 04 − 3.10E− 02 −

140 9.98E− 04 0.20 4.28E− 04 2.08 2.43E− 02 1.58

k = 1 160 9.68E− 04 0.23 3.24E− 04 2.09 1.96E− 02 1.59

180 9.93E− 04 -0.22 2.54E− 04 2.06 1.63E− 02 1.59

200 1.07E− 03 -0.71 2.05E− 04 2.02 1.38E− 02 1.58

a0 = 0.53 a0 = 0.54 a0 = 10

120 6.08E− 05 − 2.28E− 05 − 9.21E− 03 −

140 4.58E− 05 1.84 1.39E− 05 3.22 6.59E− 03 2.17

k = 2 160 6.83E− 05 -2.99 9.30E− 06 3.00 4.90E− 03 2.22

180 6.47E− 05 0.46 6.48E− 06 3.07 3.76E− 03 2.25

200 6.89E− 05 -0.60 4.77E− 06 2.90 2.96E− 03 2.26
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Example 4.6. We consider the two-dimensional viscous Burgers’ equation with a source

term

ut +
1

2

(
(u2)x + (u2)y

)
= a(uxx + uyy) + f(x, y, t), (x, y) ∈ [−π, π]2 (4.7)

with

a = 1, f(x, y, t) = e−4at sin
(
2(x+ y)

)
,

the initial condition u(x, y, 0) = sin(x+ y), and the exact solution

u(x, y, t) = e−2at sin(x+ y).

Table 6 shows that the first order and second order EIN-DDG schemes achieve optimal

accuracy when a0 ≥ 0.5, whereas the results degrade significantly if a0 = 0.49. For the

third order EIN-DDG scheme, the stability threshold for a0 is 0.54. Additionally, a more

extensive a0 leads to significantly greater errors.

Example 4.7. We solve the two-dimensional nonlinear convection-diffusion equation

ut +
1

2

(
(u2)x + (u2)y

)
= ∇ ·

(
a(u)∇u

)
+ f(x, y, t), (x, y) ∈ (−π, π)2, (4.8)

Table 6: The L
2 errors and orders of accuracy for the two-dimensional Burgers’ equation.

N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

160 3.64E− 03 − 3.64E− 03 − 1.27E− 01 −

320 1.82E− 03 1.00 1.82E− 03 1.00 6.70E− 02 0.92

k = 0 640 9.13E− 04 1.00 9.12E− 04 1.00 3.49E− 02 0.94

1280 4.57E− 04 1.00 4.56E− 04 1.00 1.76E− 02 0.99

2560 7.41E− 02 -7.34 2.28E− 04 1.00 8.81E− 03 1.00

a0 = 0.49 a0 = 0.5 a0 = 10

120 1.24E− 04 − 4.65E− 05 − 2.08E− 02 −

140 1.40E− 04 -0.79 3.47E− 05 1.90 1.64E− 02 1.56

k = 1 160 1.54E− 04 -0.72 2.70E− 05 1.87 1.33E− 02 1.56

180 1.92E− 04 -1.87 2.14E− 05 1.98 1.10E− 02 1.57

200 2.02E− 04 -0.48 1.69E− 05 2.22 9.36E− 03 1.57

a0 = 0.53 a0 = 0.54 a0 = 10

120 1.30E− 05 − 2.96E− 06 − 6.19E− 03 −

140 1.86E− 05 -2.33 1.84E− 06 3.11 4.44E− 03 2.15

k = 2 160 7.42E− 05 -10.35 1.24E− 06 2.95 3.31E− 03 2.21

180 9.29E− 05 -1.91 8.60E− 07 3.09 2.54E− 03 2.24

200 9.89E− 05 -0.59 6.16E− 07 3.17 2.00E− 03 2.25



192 Y. Li et al.

Table 7: The L
2 errors and orders of accuracy for the two-dimensional nonlinear convection-diffusion equa-

tion.

Schemes N L2 error Order L2 error Order L2 error Order

a0 = 0.49 a0 = 0.5 a0 = 10

160 7.45E− 03 − 7.68E− 03 − 2.05E− 01 −

320 3.76E− 03 0.99 3.88E− 03 0.99 1.20E− 01 0.77

k = 0 640 1.88E− 03 1.00 1.94E− 03 1.00 6.44E− 02 0.90

1280 9.43E− 04 1.00 9.73E− 04 1.00 3.30E− 02 0.96

2560 4.72E− 04 1.00 4.87E− 04 1.00 1.67E− 02 0.99

a0 = 0.49 a0 = 0.5 a0 = 10

40 1.08E− 03 − 1.10E− 03 − 1.70E− 01 −

80 2.59E− 04 2.07 2.63E− 04 2.07 8.74E− 02 0.96

k = 1 160 6.41E− 05 2.01 6.51E− 05 2.01 3.69E− 02 1.24

320 1.63E− 05 1.98 1.66E− 05 1.98 1.36E− 02 1.44

640 4.06E− 06 2.00 4.13E− 06 2.00 4.35E− 03 1.64

a0 = 0.53 a0 = 0.54 a0 = 10

40 1.26E− 04 − 1.29E− 04 − 1.03E− 01 −

80 1.76E− 05 2.83 1.81E− 05 2.83 4.35E− 02 1.24

k = 2 160 2.34E− 06 2.92 2.39E− 06 2.92 1.40E− 02 1.63

320 3.04E− 07 2.94 3.10E− 07 2.95 3.50E− 03 2.00

640 4.10E− 08 2.89 3.94E− 08 2.98 6.75E− 04 2.37

where the diffusion coefficient a(u) = u2+1, the initial condition u(x, y, 0) = sin(x+y),
the exact solution is u(x, y, t) = e−2t sin(x+ y), and the source term

f(x, y, t) = e−6t
(
− 1 + 2e2t cos(x+ y)− 3 cos(2(x+ y))

)
sin(x+ y).

We take the stabilization parameter as a1 = a0maxun{(un)2 + 1}. In Table 7, we

display the numerical results for our proposed schemes, which present the optimal

orders of accuracy of a0 = 0.5 and a0 = 0.54 for the first order, second order, and

third order EIN-DDG scheme. In addition, this table shows the slow progress of the

numerical orders of accuracy towards the asymptotic value for the case of a0 = 10.

However, the proposed schemes still show stable performance for this equation when

a0 = 0.49 and a0 = 0.53 due to the meshes not being refined enough.

4.2. Computational efficiency

In this subsection, we compare the computational efficiency of the third order

EX-RK-DDG and EIN-DDG schemes in reaching the steady state for one- and two-

dimensional convection-diffusion equations to demonstrate the advantages of our pro-

posed methods. In the following examples, the steady state is assumed to be achieved

when the residual is less than 10−10.
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Example 4.8. We solver the one-dimensional linear convection-diffusion equation
{
ut + cux = auxx, x ∈ [0, 1],

u(0) = 1, u(1) = 2
(4.9)

with c = 1, a = 0.01. The initial condition is

u(x, 0) = 1 + e−
c
a
(1−x).

Example 4.9. Here, we consider the linear convection-diffusion equation with a source

term {
ut + ux = auxx + aπ2 sin(πx) + π cos(πx), x ∈ [0, 1],

u(0) = 0, u(1) = 1
(4.10)

with a = 0.01, the initial condition is

u(x, 0) = sin(πx) +
e

x
a − 1

e
1

a − 1
.

Example 4.10. In this example, we consider the following viscous Burgers’ equation:

ut +

(
1

2
u2
)

x

= auxx, (4.11)

augmented with a = 0.01, the boundary condition is u(0) = 1.0, u(1) = 2.0, and the

initial condition is determined by

u(x, 0) =
2

1− e−
1

a
(1−x)/3

− 1.

Example 4.11. We solve the one-dimensional viscous Burgers’ equation with a source

term {
ut + uxu = auxx + f(x) in Ω = [−1, 1],

u(±1) = 0,
(4.12)

where a = 0.01, the initial condition is

u(x, 0) = sin(πx), f(x) = aπ2 sin(πx) + π cos(πx) sin(πx).

Example 4.12. Next, we consider the convection-diffusion equation in two-dimension

ut + ux = a(uxx + uyy), 0 ≤ x, y ≤ 1 (4.13)

with a = 0.01, the initial condition is

u(x, y, 0) =
1

sinhσ
e

x
2a sin(πy)

[
2e−

1

2a sinh(σx) + sinhσ(1− x)
]
,

where σ2 = π2 + 0.25/a2. The initial condition gives the boundary conditions for this

equation.
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Example 4.13. We solver the two-dimensional convection-diffusion equation with a

source term

ut + ux + uy = a(uxx + uyy)−
1

a
6e−

x6+y6

a

×
(
x5 + 6x10 + y4(y + 6y6 − 5a)− 5x4a

)
, 0 ≤ x, y ≤ 1, (4.14)

where a = 0.01, the initial condition is

u(x, y, 0) = e−
x6+y6

a .

The initial condition gives the boundary conditions for this equation.

Tables 8-13 show the maximum time-steps τmax, the number of time-steps nt, the

numerical steady time t, and the CPU time to reach the steady state for the Eqs. (4.9)-

(4.14). These tables demonstrate that our third order EIN-DDG scheme permits a con-

siderably larger time-step than the third order EX-RK-DDG scheme, thereby reducing

Table 8: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and the
CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme for
the Eq. (4.9) with N = 200, c = 1 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 9.65E-05 7,554 0.7290 14.752

1.2 0.0450 448 20.1600 2.607

3rd order EIN-DDG 1.5 0.0495 1,377 68.1615 7.939

2.0 0.0540 1,640 88.5600 10.016

Table 9: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and the
CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme for
the Eq. (4.10) with N = 200 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 9.55E-05 18,135 1.7319 31.361

1.2 0.0455 1,124 51.1420 6.210

3rd order EIN-DDG 1.5 0.0497 2,620 130.2140 14.809

2.0 0.0543 3,021 163.8890 18.572

Table 10: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme
for the Eq. (4.11) with N = 200 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 9.38E-05 6,739 0.6318 14.490

1.2 0.0455 440 20.0200 2.585

3rd order EIN-DDG 1.5 0.0500 1,418 70.9000 7.219

2.0 0.0535 1,154 61.7390 6.796
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Table 11: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme
for the Eq. (4.12) with N = 200 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 3.64E-04 11,147 4.0575 25.816

1.2 0.0475 105 4.9875 0.688

3rd order EIN-DDG 1.5 0.0525 228 11.9700 1.421

2.0 0.0583 1,248 72.7584 5.430

Table 12: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme
for the Eq. (4.13) with N = 100 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 3.15E-04 5,338 1.6815 2537.570

1.2 0.0430 353 15.1790 636.299

3rd order EIN-DDG 1.5 0.0475 432 20.5200 834.667

2.0 0.0505 301 15.2005 583.315

Table 13: The maximum time-steps τmax, the number of time-steps nt, the numerical steady time t, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme
for the Eq. (4.14) with N = 100 and a = 0.01.

a0 τmax nt t CPU time (s)

3rd order EX-RK-DDG − 3.00E-04 6,267 1.8801 2401.780

1.2 0.0210 135 2.8350 263.433

3rd order EIN-DDG 1.5 0.0240 428 10.2720 794.163

2.0 0.0260 304 7.9040 533.847

CPU time. For example, Tables 8 and 9 show that the computational time of the third

order EIN-DDG scheme with a0 = 1.5 is reduced by 46.2% and 52.8%, respectively, com-

pared to the third order EX-RK-DDG scheme. Furthermore, when a0 = 2.0, Tables 12

and 13 indicate that the CPU time of the third order EIN-DDG scheme can decrease by

77.0% and 77.8%, respectively, in contrast with the third order EX-RK-DDG scheme for

the two-dimensional equations (4.13) and (4.14). These results demonstrate the high

computational efficiency of the proposed methods.

5. Concluding remarks

We have developed the DDG method coupled with the EIN time-marching meth-

ods for diffusion equations and convection-diffusion equations in both one- and two-

dimensional cases. We have demonstrated that the schemes are stable with a relaxed

time-step restriction and an appropriate stabilization parameter a0. To verify the va-
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lidity of our proposed method, we tested some numerical experiments, including one-

dimensional and two-dimensional linear and nonlinear equations. The numerical re-

sults show that the first order and second order EIN-DDG schemes are stable and can

obtain the optimal orders of accuracy if a0 ≥ 0.5, and the third order EIN-DDG scheme

holds when a0 ≥ 0.54. We also presented the computational efficiency of the EX-

RK-DDG and EIN-DDG schemes for reaching the steady state in convection-diffusion

equations, demonstrating the effectiveness of our EIN-DDG scheme. In the future, we

will explore the application of the EIN-DDG scheme for equations with non-periodic

boundary conditions and non-uniform meshes.
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