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Abstract. This paper proposes a discussion of the direct discontinuous Galerkin
(DDG) methods coupled with explicit-implicit-null time discretizations (EIN) for
solving the nonlinear diffusion equation u; = (a(u)u,),. The basic idea of the EIN
method is to add and subtract two equal constant coefficient terms aju,, (a1 =
ap X max, a(u)) on the right-hand side of the above equation, and then apply the
explicit-implicit time-marching method to the equivalent equation. The EIN method
does not require any nonlinear iterative solver while eliminating the severe time-
step restrictions typically associated with explicit methods. We present the stability
criterion of the EIN-DDG schemes for the simplified equation with periodic boundary
conditions via the Fourier method, where the first order and second order EIN-DDG
schemes are unconditionally stable when ay > 0.5 and the third order EIN-DDG
scheme is unconditionally stable under the condition ag > 0.54. Numerical exper-
iments show the stability and optimal orders of accuracy of our proposed schemes
with a relaxed time-step restriction and the appropriate coefficient aq for both lin-
ear and nonlinear equations in one-dimensional and two-dimensional settings. Fur-
thermore, we also show that the computational efficiency of our EIN-DDG schemes
and explicit Runge-Kutta DDG (EX-RK-DDG) schemes for steady-state equations with
small viscosity coefficients to illustrate the effectiveness of the present methods.
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1. Introduction

Diffusion is a common phenomenon in nature and has been studied in areas such as
percolation, phase change, biochemistry, and population dynamics. It can be effectively
modeled using nonlinear diffusion equations. The numerical study of nonlinear diffu-
sion equations has attracted considerable attention from many scholars who are com-
mitted to developing higher order numerical methods with stability and convergence.

Although the explicit time-marching method is relatively straightforward to imple-
ment, its stability is constrained by the severe time-step 7 = O(h*) for the k-th (k > 2)
order partial differential equations (PDEs), which results in high computational costs
and renders the explicit scheme impractical. For example, under a strict CFL-like sta-
bility condition co7 < € < ¢;h?, Liu and Wen [20] proved the third order explicit
Runge-Kutta time discretization with the alternating evolution discontinuous Galerkin
scheme is stable for linear convection-diffusion equations. The implicit time-marching
method can overcome the limitation of a small time-step and can be applied to any or-
der [14]. However, a fully implicit method is not always optimal for solving nonlinear
equations, as it necessitates the resolution of a non-symmetric, non-positively deter-
ministic, and nonlinear algebraic system at each time-step [6,8,13,15,17]. Jay [16]
employed the preconditioned linear iterative method to solve approximately the linear
systems of the simplified Newton method. However, the above linear system requires
computing and storing the Jacobian of nonlinear operators, and its fast solution re-
lies on an efficient preconditioner, which increases the difficulty of the implicit time-
marching method. In order to overcome such difficulties, the implicit-explicit (IMEX)
time-marching methods [1, 2, 12,23, 24] have been proposed and treated the higher
order derivative terms implicitly and the rest of the terms explicitly. Such a treatment
permits a portion of the solution to be explicit, which is typically more efficient than
the fully implicit method. Nevertheless, due to each implicit stage requiring solving
a nonlinear system, the method may not apply to equations where both the convection
and diffusion terms are nonlinear.

To address the abovementioned issues, Douglas and Dupont [7] proposed and
adopted a method to guarantee the stability of nonlinear diffusion equations on a rect-
angular domain. Later, Duchemin and Eggers [9] proposed and referred to that method
as explicit-implicit-null method. We take the one-dimensional nonlinear diffusion equa-
tion as an example to illustrate the idea of the EIN method. Adding and subtracting the
equal term aju,, on the right-hand side of the equation w; = (a(u)u,),, we obtain

u = (a(u)ug), — G1Ugz + A1Uzz, a1 = ap X maxa(u), (1.1
—— U
T1 T2

where a(u) > 0 is bounded and smooth, ag is a stabilization parameter and is con-
stant. We treat the term 77 explicitly and the term 75 implicitly. Here, the EIN method
does not require any nonlinear iterative solver while eliminating the typically severe
time-step restrictions, which combines the advantages of both explicit and implicit
methods. Recently, the EIN methods coupled with spatial discretizations were success-
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fully applied to assure the stability for many problems, such as the two-dimensional
radiation hydrodynamics equations with the high order explicit Lagrangian finite vol-
ume scheme [18], the convection-diffusion equations and the convection-dispersion
equations with spectral collocation schemes [28], the high order dissipative and dis-
persive equations with the finite difference methods and the LDG methods [27], the
nonlinear diffusion equations with the LDG methods [31], the Cahn-Hilliard equations
with the LDG methods [25]. For more previous work on the EIN methods, please
see [10,11,26,32,39].

However, the LDG method requires complex manipulation of the PDEs, such as
introducing auxiliary variables and rewriting the original equations as a first order sys-
tem, which leads to high computational costs. The DDG method is based on the direct
weak formulation for solutions of the equations under consideration, initially proposed
by Liu and Yan [21] for linear diffusion equations, without rewriting the equation into
a first order system. That method is necessarily identified by an appropriate selection of
numerical flux to be used as derivatives of the solution at the cell interface. The numer-
ical flux formula is simple, compact, consistent, and conservative. The most significant
features of the DDG method are its low storage requirements and excellent computa-
tional performance. In recent studies, the DDG method has been successfully applied to
convection-diffusion equations [22,29, 33], the Korteweg—de Vries equation [36], the
Navier-Stokes equation [4,37,38] and compressible turbulent flows [34,35] and so on.

The main purpose of this paper is to develop the DDG method with EIN time-
marching method for the nonlinear diffusion equations. By the aid of the Fourier
method, we present the first order to third order EIN-DDG schemes and their stabil-
ity and optimal orders of accuracy under the relaxed time-step restriction and suitable
stabilization parameter ag. In addition, to demonstrate the advantages of our schemes,
we compare the computational efficiency required to reach the steady state for the
EX-RK-DDG scheme and the EIN-DDG scheme for convection-diffusion equations with
small viscosity coefficients. Although our analysis is based on a one-dimensional diffu-
sion equation, numerical experiments demonstrate that the conclusions can also be ex-
tended to the one-dimensional and two-dimensional linear and nonlinear convection-
diffusion equations.

The rest of the paper is organized as follows. Section 2 presents the DDG method
with the EIN time-marching methods for diffusion equation. Section 3 is devoted to
analyzing the stability of the EIN-DDG schemes for the linear diffusion equation via
the Fourier method. In Section 4, numerical tests are given to verify the stability, the
optimal orders of accuracy, and the computational efficiency of the EIN-DDG schemes
for the one-dimensional and two-dimensional linear and nonlinear equations. Finally,
the concluding remarks are given in Section 5.

2. The numerical schemes

In this section, we present the discontinuous finite element space and the semi-
discrete DDG scheme, and introduce the EIN Runge-Kutta time discretization methods.
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For simplicity of analysis, we consider the one-dimensional linear diffusion equation
U = QUgy, € Qx(0,T) 2.1

with initial condition u(z,0) = sin(ax). Similar to the Eq. (1.1), we can obtain the
following equivalent form of (2.1):

up = (@ — a1)Ugy + A1 Uzz, a1 = ag X a, (2.2)
‘,—/ W—/
T1 T2

where qy is the stabilization parameter. We will discretize the term T} explicitly and
the term 75 implicitly in (2.2).

2.1. The discontinuous finite element space

Let
Th = {Ij = (wj_%vwﬂ_%);v:l}

be a uniform partition of Q = (v, zg), with mesh size h := x;,1/5 — x;_1/5, where
T/ = zp and x4/ = TR are two boundary endpoints. Then, we can define the
following discontinuous finite element space:

Vi ={veL?(I) vl € Pr(l;), Vi=1,...,N}, (2.3)

where Py (I;) denotes the space of polynomials up to degree k on cell I;, where k is
a non-negative integer. For any u € V},, there are two traces at an element interface
Tjt1/2, §=0,..., N, namely

uj = lim u(xj+% —i—e),

= lim w(x, 1 +e¢€
+3 o0t ; ( It )7

U
Jt3 e—0~

and we denote its jump and average as
[u]. 1 =u" | —u” {u}; 1:1(u+ +u >
gty T Uiy iy itz T 2\ts it

2.2. The spatial discretizations

The semi-discrete DDG scheme of (2.2) is to find the unique approximation solution
u € V},, such that for arbitrary test functions v € V},, we have

. — it3
(ug,v); = (a— al)(uﬂ)]j_g — (uw,vw)j) +aq (uwvlj_g — (uw,vw)j), 2.4)
Ty Ty

where (-, -); denotes the inner product in L?(I;), and

(7 — (7). ot
Uz | 1= (uw)j_% Vil (ux)j_% v

(VI
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Here v, 44/, denote values v at = x ;1 , with the numerical flux term %, defined as

T = 2L+ (e} + Brhluee], 25)
where 3y and 3, are coefficients to be chosen to ensure the stability of the scheme.
In our work, we take Sy = 1 ~ 4 and 5y = 1/12 according to the work of Liu et
al. [3,19,21]. It is important to note that the above numerical flux is both consistent

and conservative, i.e., u, = u, for any smooth v and u,, is single-valued.

Remark 2.1. For the nonlinear diffusion equation (1.1), where w € V}, is taken as the
test function, the DDG scheme is defined as follows:

—_— i+ SR N
(u,w); = <a(u)u$w\;_§ — (a(u)ugg,wgc)j) —a (uxw\j_g — (ugg,wx)j)

T

P
+ a; <umw’j_i - (ux7wm)j)7
2

T

where

Jﬁaz%wm+wwa+&ﬁwma,Mmzéﬁ@@.

2.3. The temporal discretizations

This subsection briefly introduces the EIN RK method used in this paper. The semi-
discrete DDG scheme can be expressed in the following form:

Z—? =ZL(t,u) + AN (t,u) =: Z(t,u), (2.6)
where Z(t,u) is derived from 75 in (2.4) and is treated implicitly, whereas .4/ (¢, u)
is derived from 73 in (2.4) and is treated explicitly, and Z(t,u) is the residual. The
general s-stage EIN RK time-marching scheme is employed to solve the Eq. (2.2) whose

solution advanced from time " to t"*! = " 4 7 is given by

i i—1
uvt =" —|—7'Zaij.iﬂ (t{b,u”’j) +Tz&ijJV (t%,u"’j) , 2<i1<s+1,
j=1 j=1

(2.7
s+1 s+1 R
"t =y 1 Z b; L (t;, u"’i) + T Z b; N (t%, u"’i) ,
=1 =1

where 7 is the time-step, v denotes the intermediate stages,

% i—1
CZ‘:E CLZ‘J‘:E dija 2<1<s+1,
Jj=1 Jj=1
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and t% = t, + ¢;7. Denote

A~

A= (a;), A= ()€ R(+1)x(s+1)
~T R

bT:[b1>“‘>bs+1]a b :[617“‘7b3+1]7 CT:[07627"~7CS+1]~

The general s-stage EIN RK scheme can be expressed as the Butcher tableau as follows:

cl Al A
b’ |6

In this paper, we consider the following three specific EIN RK time discretizations:

— First order EIN RK scheme in [1] :

0 010
1|1 (2.8
[0 1]1 0
— Second order EIN RK scheme in [31]:
0j]0 0 OO0 O O
1 1 1
2102 02 % °
1= 0 =|0 1 0- (2.9)
2 2
1 1
— 0 =10 1 0
2 2
— Third order EIN RK scheme in [1]:
0{0 O 0O 0 0] O0 0O 0 0 O
L 0 L 0O 0 O L O 0 0 O
2 2 2
2 0 1 1 0 0 11 1 0 0 0
3 6 2 18 18
1 1 1 1 ) 5 1 (2.10)
2 0 2 2 2 0 6 6 2 00
1 1|1
1l 3 3 L1173 7,
2 2 2 214 4 4 4
o 3 3 1 1)1 7 3 7
2 2 2 214 4 4 4
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The second order EIN RK scheme (2.9) we consider is a modification of the second
order scheme given by [5]

0/lo 0o 0|l 0 0 0
B p ©
515 00 5 00
1L ezt 1y, (2.11)
2 2] pop
1 1|p—1 1
—O—M——O
2 21 poop

where ¢ # 0. Note, at the first stage, the discretization of Z(¢,u) in (2.9) is im-
plicit, whereas scheme (2.11) discretizes .#(¢,u) explicitly, thus the stability of the
scheme (2.9) is better than that of the scheme (2.11). In addition, the third order EIN
RK scheme (2.10) is a four-stage, third order, L-stable, singly diagonally implicit RK
method, coupled with a four-stage, third order explicit RK method. For more detailed
time discretization methods, please see [1,2].

3. Stability analysis

In this section, we use the standard Fourier analysis to analyze the stability of the
proposed EIN-DDG schemes. We would like to investigate how to choose ag so that the
EIN-DDG schemes are unconditionally stable.

Given that we have performed explicit and implicit treatments of the two equal
terms in Eq. (2.2), it can be concluded that a larger ag would lead to more signifi-
cant errors. However, a minimal value of ay cannot be used to maintain the proposed
scheme’s stability. Thus, our study’s objective is to investigate the threshold value of
parameter q that ensures the stability of our EIN-DDG schemes. Since the L?-norm of
the exact solution to the Eq. (2.1) does not increase in time, we can obtain the stability
condition of the EIN-DDG scheme in the following lemma [27].

Lemma 3.1. If G is uniformly diagonalizable and |\¢| < 1 holds for all ¢ = ah € [—m, 7,
where \q is the spectral radius of G, then the EIN-DDG scheme is stable.

3.1. First order EIN-DDG scheme

Now, with the aid of the Fourier method, we give the stability result of the first
order EIN-DDG scheme in the following theorem.

Theorem 3.1. If ag > 0.5, then the first order EIN-DDG scheme is unconditionally stable.

Proof. By choosing the Lagrangian polynomial L;(x) = 1 as the basis function, we
can express the numerical solution as u(z,t)|;, = u;L;(z), 1 < j < N. Taking v = 1
in (2.4), we have

(uj)e = % ((a = a1)(Bouj—1 — 2Bou;j + Poujt1) + a1 (Bowj—1 — 2Bou; + Bouji1)). (3.1)
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Note, when &k = 0, the numerical flux (2.5) reduces to u, = SBy[u]/h.
We make an ansatz of the form u; = 4 e’ 2 = —1, and substitute this into (3.1),
then obtain

(i) = % ((a — a1)(Boe ™" — 2By + Boe™™) + a1 (Boe ™" — 26y + Boe™™™)) i1y, (3.2)
When this equality is combined with the EIN time discretization (2.8), it gives
att = Gaf,
where G is given by

G=1+4+205y(1—ag)aX(cos& —1)
1+260(1 —ag)aA(cos& — 1)
1 —2Bpapar(cos & — 1)

+ 2BpapaAr(cos & — 1)
2BpaA(cos & — 1)

=1 3.3
Tz 2BpapaX(cos & — 1)’ (3.3)
and \ = 7/h%. By applying Lemma 3.1, we have
2Bpa(cos & — 1)
1 <1 3.
Tz 2Bpaga(cos& —1)| = 7 3.4
ie.,
( 1
a

0= 2Bpa(cos & — 1)’
(2a0 — 1)Boa(cos§ — 1) < 1,
2BpaX(cos& — 1) < 0.

Then we can conclude that ay > 0.5. So, we completed the proof of this theorem. O

3.2. Second order and third order EIN-DDG schemes

In this subsection, taking the third order EIN-DDG scheme as an example, we can
also use the Fourier analysis to obtain the stability result.
Similarly, we define the Lagrangian nodal basis polynomials as

2 I
Xr —X;
Li(x) = ( ) 0<s<2 1<j<N
i (.IS—ZCZ)7 ) )
1=0 \"J J
l#s

where the grid points are defined as z = z; + ((s — 1)/3)h, and the numerical solution
u(x,t) inside each cell /; can be represented as

2

u(z,t)]r, = Z ué(t)Lé(m)

=0
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Here we choose the point values of the solution u(z$,?) inside cell I; as the degree of
freedom, denoted by uj(t), 0<s<2, 1<j<N.

By taking the test functions v as L3(z), 0 < s <2, 1 < j < N, and inverting the
small 3 x 3 mass matrix, we can rewrite the DDG scheme (2.4) as

1
(uj)t = ﬁ((a — al)(Auj,l + Bu]' + CUj+1) + al(Allj,1 + Bllj + CUj+1)), (3.5

where u; = (u)(t),u}(t),u3(t))" and the specific form of the matrices defined as

ai1 a2 a3 bir b2 b3 c11 ci2 13
A= a2 ax ax |, B=| bx by by |, C=| ca c2 c3 |,
az1 agz ass3 b31 b3a b33 €31 €32 €33
23 1
an = o (—4+ By + 2481), aro = 57 (414 = 1156 — 165661),
9
a3 = 1—(—1844—1155@ +55261), a9 = 1—6(4—50 —244),
3 9
a22:§(—18+5ﬁ0+7251)7 a23:1_6(8_5/80_24/81)’
1 1
az1 = — (16 — Bo — 2451) , azp = — (=18 + 558 + 72/1),
16 24
1 3
ass = ¢ (8 =58y —24/1), b1y = 3 (=6 — 198y — 8844),
1 3
bia = T2 (—18 + 5589 + 792ﬁ1) , b1z = g (10 — 3By — 8851) ,
3 3
by = 3 (424960 + 7261) , bay = 1 (—42 =56y — 72/1),
(3.6)
9 3
bas = g (144 360 + 2451) . bs1 = 5 (10 =35 — 8861)
1 3
b3z = B (=18 + 5580 + 79251) , b3z = 3 (=6 — 196y — 8801),
1 1
c11 = E(8—5ﬁo—2451), Cl2 = ﬁ(_18+550+7251)’
1 9
— (16— — 24 — L (8—58) —24
€13 = 1¢ (16 — fo B1), €21 = ¢ (8 =50 B1),
3 9
022=§(—18+550+7251), 023:E(4_ﬁ0_24ﬁ1)’
1 1
c31 = E (—184 + 1158y + 55251) , €32 = ﬂ (414 — 1156y — 165651) ,
23

T (—4+ Bo+2451) .
We make an ansatz of the form

u?(t) zl?
ui(t) | = a5(t) et 2 = 1, (3.7)
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Denote @; = (a9(t),a}(t),a5(t))". By substituting Eq. (3.7) into Eq. (3.5), we can
obtain ~

(ﬁj)t = G(a’ h)ﬁj’ (38)
which G(a, h) is given by

G(a,h) = h_12 ((a— a1)(Ae” " 4 B 4 Ceth) 4 a(Ae~h + B + Ceiah)), (3.9

where the matrices A, B and C are defined in (3.6).
By using (2.7) and (3.8), we can get

~an+1 _ A~ T
0 = Gy,

where G is the amplification matrix and is given by

5 5
G=1+Gy Y bM+Gg ) bM, (3.10)
=1 =1
where
M, =1,
s—1 s—1
M, = (I - asst)_l (I + G/V Z&slMl + G_Sf ZaslMl> , 2<s<5,
I=1 I=1
Gy = aoa%(Ae_mh + B4 Ceh),
Gy =a(l-ap) L(Ae_mh + B+ Ceh),

Due to the complexity of the formula for the amplification matrix G in (3.10), we
will try to obtain the threshold value of ay numerically. In the following, we briefly
show the specific procedure. Note, the amplification matrix G is a function of the
variables &, A, a, ag, 5o, 1. The stability region is defined as a region of the positive real
(ag, \)-plane such that |[A\g| < 1 according to the Lemma 3.1. However, the spectral
radius of the amplification matrix in experiments may be larger than one due to round-
off errors. Thus, we relax the condition in Lemma 3.1 by requiring that the spectral
radius satisfies [Ag| < 1 + 107!, In order to determine the boundary of the stable
region, we take A = 10’ and a9 = 10%, where the variable 6 represents a series of
discrete values, each separated by a distance of 0.01, ranging from —10 to 10, for any
fixed a, By, f1 and all discrete values of £ € [—7, w]. Here, we take fy = 2and 51 = 1/12,
which also applies to the second order EIN-DDG scheme. Fig. 1 indicates the stability
of the third order EIN-DDG scheme.

We find that the lower bound of the parameter a( to ensure the unconditional sta-
bility is 0.54 for the third order EIN-DDG scheme. Similarly, we can obtain that the
threshold value of ag is 0.5 for the second order EIN-DDG scheme. Here, we omit the
details.
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Ig a,

Figure 1: The stability region of the third EIN-DDG scheme corresponds to ap and A for Eq. (2.2). The
scheme is stable when ag and A are in the black region.

Remark 3.1. Although our stability analysis is based on a linear model, numerical
experiments demonstrate that the above results apply to nonlinear models. We omit
details here to save space, see the numerical experiments in Section 4.

Remark 3.2. The above stability results for the one-dimensional case can be extended
to the multidimensional case through a similar stability analysis. For 2D numerical
results, please refer to Section 4.

Remark 3.3. It should be noted that the threshold for the stabilization parameter ay is
strongly related to the specific EIN time discretization rather than the spatial discretiza-
tion method. Therefore, the constant ¢y = 0.5 and ay = 0.54 may be invalid if we use
other EIN time discretization methods. For example, we cannot obtain the threshold
value ap = 0.5 and a¢ = 0.54 for our EIN-DDG schemes by using the time discretization
in [30].

4. Numerical experiments

In this section, we numerically verify the stability and accuracy orders of the EIN-
DDG schemes for both one- and two-dimensional linear and nonlinear equations. Ad-
ditionally, we compare the computational efficiency of the EX-RK-DDG and EIN-DDG
schemes in reaching the steady state for convection-diffusion equations.

For the spatial discretization, we take piecewise constant, linear, and quadratic
polynomials for the first order, second order, and third order EIN-DDG schemes, re-
spectively. The equations with periodic boundary conditions are considered unless oth-
erwise specified. We adopt the Lax-Friedrichs numerical flux for the convection part,
and take 5y = 1 and 51 = 1/12 for the first order EIN-DDG scheme, and take 5, = 2 and
f1 = 1/12 in the numerical flux (2.5) for the second order and third order EIN-DDG
schemes.
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4.1. The stability and accuracy test

This subsection presents the numerical verification of the stability and the orders of
accuracy of the proposed EIN-DDG schemes for linear and nonlinear equations in both
one-dimensional and two-dimensional cases. We illustrate the smallest aq to assure the
stability of the first order, second order, and third order EIN-DDG schemes as 0.5, 0.5,
and 0.54, respectively. In this subsection, we take 7 = h and the final time 7" = 1 in all
cases unless otherwise stated.

4.1.1. One-dimensional numerical tests

Example 4.1. We consider the one-dimensional diffusion equation

Ut = AUgy, T € [—T,7), 4.1
u(z,0) = sin(z) .
with the exact solution
u(z,t) = e~ sin(z). (4.2)

The L? errors and orders of accuracy for this equation with the parameter a = 1.0
are listed in Table 1. When ag > 0.5, the first order and second order EIN-DDG schemes

Table 1: The L? errors and orders of accuracy for the one-dimensional diffusion equation.

Schemes | N L2 error | Order | LZ?error | Order | L?error | Order
ag = 0.49 apg = 0.5 ap =10

320 | 3.70E — 03 — 3.70E — 03 — 1.11E - 01 —
640 | 1.85E — 03 1.00 1.85E—-03 | 1.01 5.80E—-02 | 0.93
k=0 1280 | 9.25E — 04 1.00 924E—-04 | 1.00 | 2.97E—-02 | 0.97
2560 | 4.63E — 04 1.00 4.62E—-04 | 1.00 | 1.50E —02 | 0.98
5120 | 1.77E+01 | -15.23 | 231E—-04 | 1.00 | 7.56E —03 | 0.99
ag = 0.49 ag = 0.5 ap =10
40 6.61E — 04 — 6.79E — 04 — 1.12E - 01 —
80 1.67E — 04 1.99 1.71E—-04 | 1.99 | 4.37TE—02 | 1.36
k=1 160 | 4.39E — 05 1.92 428E—-05 1| 2.00 | 1.44E—-02 | 1.60
320 | 8.82E—-05 | -1.01 1.07TE—-05| 2.00 | 4.25E—-03 | 1.76
640 | 2.83E—-02 | -8.33 | 2.68E—06 | 2.00 1.16E—03 | 1.88
ag = 0.53 ag = 0.54 ap =10
40 5.35E — 05 - 3.39E — 05 — 4.35E — 02 —
80 1.39E — 05 1.95 4.22E—-06 | 3.01 1.12E—-02 | 1.96
k=2 160 | 8.89E — 06 0.64 4.99E — 07 | 3.08 | 2.20E—-03 | 2.35
320 | 4.01E—-05| -2.17 | 6.44E—-08 | 296 | 3.58E—-04 | 2.62
640 | 6.58E—-03 | -7.36 | 8.06E—09 | 3.00 | 5.12E—-05 | 2.80
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are observed to be stable and achieve optimal orders of accuracy in both space and
time. Obviously, these two schemes are unstable for the case of ag = 0.49. Additionally,
the third order EIN-DDG scheme can obtain optimal orders of accuracy if ay > 0.54,
whereas the simulation quality deteriorates with mesh refinements if ay = 0.53. Note
that increasing a( results in more significant errors. The simulation results coincide
with the theory.

Example 4.2. We compute the viscous Burgers’ equation with a source term
U + UUy = AUy + g2, 1), x € |—m, 7|,

u(z,0) = sin(x),

where g(z,t) = e 2% sin(2x)/2, the exact solution to the equation is given by (4.2).
The parameter a is taken as 1.0, and the L? errors and orders of the accuracy of the
three schemes for Eq. (4.3) are shown in Table 2. Our proposed EIN-DDG schemes can
still achieve stability and optimal error accuracy when a( exceeds the corresponding
threshold. The simulation results for the Eq. (4.3) are similar to those for the Eq. (4.1),
and thus are not detailed here.

Fig. 2 shows the L? errors of the second order and third order EIN-DDG schemes
for solving the viscous Burgers’ equation (4.3) with a = 1. We take 7 = 0.1 and 7' = 20.

Table 2: The L? errors and orders of accuracy for the one-dimensional viscous Burgers’ equation.

Schemes | N L2 error | Order | L?error | Order | L2 error | Order
ag = 0.49 ag = 0.5 ag = 10

320 | 4.15E - 03 — 4.10E — 03 — 1.08E — 01 —
640 | 2.07E—-03 | 1.00 | 2.04E—-03 | 1.00 | 5.68E—02 | 0.93
k=0 1280 | 1.03E—-03 | 1.00 | 1.02E—03 | 1.00 | 2.90E —02 | 0.97
2560 | 7.03E—-04 | 0.56 | 5.09E—-04 | 1.00 | 1.47E—-02 | 0.98

5120 NaN NaN | 2.55E—-04 | 1.00 | 7.39E—-03 | 0.99
apg = 0.49 apg = 0.5 apg = 10
40 | 7.88E — 04 - 7.17E - 04 - 1.11E - 01 -

80 220E—-04 | 1.84 | 1.77TE—04 | 2.02 | 4.34E—-02 | 1.36
k=1 160 | 1.26E—04 | 0.80 | 4.40E—05| 2.01 | 142E—-02 | 1.61
320 | 6.63E—04 | -2.40 | 1.10E—05 | 2.00 | 4.20E—-03 | 1.76
640 | 2.06E—01 | -8.28 | 2.75E—06 | 2.00 | 1.14E—03 | 1.88
ag = 0.53 ag = 0.54 apg = 10
40 9.15E — 05 — 4.20E — 05 — 4.31E — 02 —
80 2.69E—-05| 1.77 | 5.0lE—06 | 3.07 | 1.11E—02 | 1.96
k=2 160 | 1.91E—05| 0.50 | 5.66E—07 | 3.15 | 2.17TE—-03 | 2.35
320 | 8.36E—05| -2.13 | 735E—08 | 2.94 | 3.53E—04 | 2.62
640 | 1.37TE—02 | -7.36 | 9.20E—09 | 3.00 | 5.04E—05 | 2.81
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Figure 2: The L? errors of the second and third order EIN-DDG schemes for solving (4.3), where a = 1,
the final time 7" = 20, and time-step is taken as 7 = 0.1.

As the mesh is refined, the L? errors of the second order scheme reach an exponential
convergence rate, while the time-step 7 remains independent of the mesh size h for the
third order scheme.

Example 4.3. We consider the nonlinear convection-diffusion equation

{ut +uuy = (a(w)ug)z + f(,t), =€ [-m, 7], 4.4)

u(zx,0) = sin(z),

where the diffusion coefficient is a(u) = u? + 2, the source term is

f(z,t) = —(4cos(z +t) + 9sin(z + ) + 2sin(2(z + t)) — 3sin(3(z + 1)),

Ry

and the exact solution of Eq. (4.4) is u(x,t) = sin(z + t).

In this example, we take a; as agmax,»{(u")? + 2}, where u™ is the value of the
numerical solution at time level t”. The numerical results of the three schemes with
different aq are listed in Table 3. Even though both the convection and diffusion terms
are nonlinear, the first order and second order EIN-DDG schemes remain stable and
achieve optimal orders of accuracy if a; > 0.5max,»{(u")? + 2}. The third order
EIN-DDG scheme is stable and can achieve optimal error accuracy under the condition
ay > 0.54max,n{(u™)? + 2}. Similarly, the results with ag = 0.49 and ap = 0.53 show
instability.

4.1.2. Two-dimensional numerical tests

Example 4.4. We consider the two-dimensional diffusion equation

Ut = Au’ (x’y) € (—77,71')2 (45)
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Table 3: The L? errors and orders of accuracy for the one-dimensional nonlinear convection-diffusion equa-
tion.

Schemes N L?error | Order | L2?error | Order | L?error | Order
apg = 0.49 apg = 0.5 apg = 10
640 1.12E — 02 — 1.14E — 02 — 1.86E — 01 —

1280 | 5.62E—03 | 1.00 | 5.71E—03 | 1.00 | 9.65E —02 | 0.94
k=0 2560 | 2.81E—03 | 1.00 | 2.86E—03 | 1.00 | 4.93E—-02 | 0.97
5120 | 141E-03 | 1.00 | 143E—-03 | 1.00 | 249E—-02 | 0.98
10240 | 5.45E—-03 | -1.95 | 7.15E—-04 | 1.00 | 1.25E—02 | 0.99
ag = 0.49 ag = 0.5 ap =10
160 3.66E — 04 — 3.62E — 04 — 9.60E — 02 —

320 9.54E —-05| 194 | 947E—-05| 1.93 | 3.44E—-02 | 1.48
k=1 640 2.38E—-05| 2.00 | 2.36E—-05| 2.01 | 1.06E—02 | 1.70
1280 | 8.12E—06 | 1.55 | 5.89E—06 | 2.00 | 2.99E—-03 | 1.83

2560 NaN NaN | 1.48E—-06 | 2.00 | 7.99E—-04 | 1.90
apg = 0.53 ag = 0.54 ag = 10
320 1.61E — 06 — 1.66E — 06 — 7.26E — 03 —

640 | 2.02E—-07 | 2.99 | 226E—07 | 2.88 | 1.29E—03 | 2.49
k=2 1280 | 2.55E—-08 | 299 | 285E—-08 | 298 | 1.98E—-04 | 2.70
2560 | 3.52E—-09 | 2.86 | 4.01E—-09 | 2.83 | 2.83E—05 | 2.81
5120 NaN NaN | 457E—-10 | 3.13 | 3.64E—06 | 2.96

with the initial condition u(z,y,0) = sin(z + y). This equation has an exact solution
u(z,y,t) = e ?*sin(z + y). In Table 4, we present a mesh refinement study from 3202
to 51202 grid points to verify the stability of the first order EIN-DDG scheme for the
case of ay > 0.5, as well as the stability of the second order and third order EIN-DDG
schemes when ag > 0.5 and ag > 0.54, respectively. As expected, the errors for ag = 10
are larger, and the numerical order of accuracy converges towards the asymptotic value
more slowly with mesh refinements than in the case of ay = 0.54.

Example 4.5. We compute the two-dimensional linear convection-diffusion equation
up + c(uy + uy) = a(tgy + uyy), (z,y) € [-, )2 (4.6)

with ¢ = a = 1, the initial condition u(z,y,0) = sin(z + y). The equation has an exact
solution
u(z,y,t) = e 2 sin(z + y — 2ct).

In Table 5, we display the stability and orders of the accuracy of the EIN-DDG schemes
for the convection-diffusion equation (4.6) with different ay. The simulations of this
equation are similar to those of Eq. (4.5) and are therefore not described in detail here.
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Table 4: The L? errors and orders of accuracy for the two-dimensional diffusion equation.

Schemes N L? error | Order | L2 error | Order | L? error | Order
apg = 0.49 apg = 0.5 ag = 10

320 | 1.88E — 03 — 1.88E — 03 — 6.90E — 02 —
640 | 9.40E — 04 1.00 9.39E — 04 1.00 3.53E—-02 | 0.97
k=0 1280 | 4.70E — 04 1.00 4.70E—-04 | 1.00 1.78E —-02 | 0.99
2560 | 2.36E — 04 1.00 235E—-04 | 1.00 | 8.92E—-03 | 1.00
5120 | 5.26E+01 | -17.77 | 1.17TE — 04 1.00 | 4.46E — 03 1.00
apg = 0.49 apg = 0.5 ag = 10
120 | 7.38E — 05 — 4.39E — 05 — 2.11E — 02 —
140 | 8.04E - 05 | -0.56 | 3.25E — 05 1.96 1.66E — 02 1.55
k=1 160 | 8.58E —05 | -0.48 | 2.49E — 05 1.98 1.35E — 02 1.57
180 | 9.56E — 05 | -0.92 1.97E—-05 | 2.01 1.12E — 02 1.57
200 1.11E—-04 | -1.40 1.59E - 05 | 2.05 9.48E — 03 1.56
ag = 0.53 apg = 0.54 apg = 10
120 1.08E — 05 — 2.74E — 06 — 6.29E — 03 —
140 1.10E—-05 | -0.11 1.68E—-06 | 3.18 | 451E—-03 | 2.15
k=2 160 1.31IE—-05 | -1.33 1.15E—-06 | 2.81 3.36E —-03 | 2.20
180 1.35E—-05 | -0.24 | 7.98E —07 | 3.13 258E—-03 | 2.24
200 1.58E—-05 | -1.53 5.95E — 07 | 2.79 2.04E —-03 | 2.25

Table 5: The L? errors and orders of accuracy for the two-dimensional linear convection-diffusion equation.

Schemes N L2 error | Order | L2 error | Order | L2 error | Order
ag = 0.49 apg = 0.5 apg = 10
160 1.24E — 02 — 1.23E — 02 — 1.70E — 01 —

320 | 6.11E—03 | 1.02 | 6.06E—03 | 1.02 | 9.39E—02 | 0.86
k=0 640 | 3.02E—03 | 1.01 | 3.00E—03 | 1.02 | 4.8E—-02| 0.95
1280 | 1.50E—-03 | 1.01 | 1.49E—-03 | 1.01 | 2.45E—-02 | 0.99
2560 | 2.56E—-02 | -4.09 | 744E—-04 | 1.00 | 1.23E—-02 | 1.00
ag = 0.49 apg = 0. apg = 10
120 | 1.03E — 03 - 5.90E — 04 — 3.10E — 02 -

140 | 9.98E—-04 | 0.20 | 428E—-04 | 2.08 | 243E—-02 | 1.58
k=1 160 | 9.68E—04 | 0.23 | 3.24dE—-04 | 2.09 | 1.96E—02 | 1.59
180 | 9.93E—-04 | -0.22 | 2.54E—-04 | 2.06 | 1.63E—-02 | 1.59
200 | 1.0tE-03 | -0.71 | 2.05E—-04 | 2.02 | 1.38E—-02 | 1.58
ag = 0.53 apg = 0.54 apg = 10
120 | 6.08E — 05 - 2.28E — 05 - 9.21E — 03 -

140 | 458E—-05| 1.84 | 1.39E—-05 | 3.22 | 6.59E—-03 | 2.17
k=2 160 | 6.83E—05 | -2.99 | 9.30E—06 | 3.00 | 4.90E—-03 | 2.22
180 | 6.47TE—-05 | 0.46 | 648E—06 | 3.07 | 3.76E—03 | 2.25
200 | 6.89E—-05 | -0.60 | 4.77TE—06 | 2.90 | 2.96E —03 | 2.26

ot
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Example 4.6. We consider the two-dimensional viscous Burgers’ equation with a source
term

1

ut + 5 ((uz)x + (u2)y) = a(umm + Uyy) + f(:C, Y, t)a (x> y) € [_ﬂ-a 7T]2 4.7)

with
a=1, flzy,t)=e""sin(2z +y)),
the initial condition u(x,y,0) = sin(x + y), and the exact solution

2at sin(z + y).

u(z,y,t) =e”
Table 6 shows that the first order and second order EIN-DDG schemes achieve optimal
accuracy when ag > 0.5, whereas the results degrade significantly if ay = 0.49. For the
third order EIN-DDG scheme, the stability threshold for ag is 0.54. Additionally, a more
extensive ag leads to significantly greater errors.

Example 4.7. We solve the two-dimensional nonlinear convection-diffusion equation

Ut + %((UQ):E =+ (u2)y) =V (a(u)vu) + f(ﬁ,y,t), (ZC,y) € (—W’W)Q’ (48)

Table 6: The L? errors and orders of accuracy for the two-dimensional Burgers' equation.

N L2 error | Order | LZ?error | Order | L?error | Order
ag = 0.49 ag = 0.5 ap =10

160 | 3.64E — 03 — 3.64E — 03 — 1.27E — 01 —
320 | 1.82E - 03 1.00 1.82E—-03 | 1.00 | 6.70E —02 | 0.92
k=01 640 | 9.13E — 04 1.00 912E—04 | 1.00 | 3.49E —-02 | 0.94
1280 | 4.57E — 04 1.00 4.56E—-04 | 1.00 | 1.76E —02 | 0.99
2560 | 741E—-02 | -7.34 | 228E—-04 | 1.00 | 881E—03 | 1.00
ag = 0.49 ag = 0.5 ap =10
120 | 1.24dE— 04 — 4.65E — 05 — 2.08E — 02 —
140 | 1.40E—-04 | -0.79 | 347TE—-05| 1.90 | 1.64E—-02 | 1.56
k=1 160 | 1.54E—-04 | -0.72 | 270E—-05 | 1.87 | 1.33E—-02 | 1.56
180 1.92E—-04 | -1.87 | 2.14E — 05 1.98 1.10E — 02 1.57
200 | 2.02E—04 | -0.48 | 1.69E—05 | 2.22 | 9.36E—-03 | 1.57
ag = 0.53 ag = 0.54 ap =10
120 | 1.30E — 05 — 2.96E — 06 — 6.19E — 03 -
140 | 1.86E—05 | -2.33 1.84E—-06 | 3.11 | 444E—-03 | 2.15
k=21 160 | 742E—-05 | -10.35 | 1.24dE—-06 | 295 | 3.31E—03 | 2.21
180 | 9.29E—-05 | -1.91 | 8.60E—07 | 3.09 | 2.54E—-03 | 2.24
200 | 9.89E—-05 | -0.59 | 6.16E—07 | 3.17 | 2.00E—-03 | 2.25
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Table 7: The L? errors and orders of accuracy for the two-dimensional nonlinear convection-diffusion equa-
tion.

Schemes N L2%2error | Order | L2error | Order | L2error | Order
apg = 0.49 ag = 0.5 apg = 10
160 7.45E — 03 — 7.68E — 03 — 2.05E — 01 —

320 | 3.7T6E—-03 | 099 | 3.88E—03 | 0.99 | 1.20E—01 | 0.77
k=0 640 | 1.88E—03 | 1.00 | 1.94E—03 | 1.00 | 6.44E—02 | 0.90
1280 | 943E—04 | 1.00 | 9.73E—-04 | 1.00 | 3.30E—02 | 0.96
2560 | 4.72E—-04 | 1.00 | 487TE—-04 | 1.00 | 1.67TE—02 | 0.99
ag = 0.49 ap = 0.5 ag = 10
40 1.08E — 03 — 1.10E — 03 — 1.70E — 01 —

80 2.59E —-04 | 2.07 | 263E—04 | 2.07 | 8.74E—02 | 0.96
k=1 160 | 6.41E—05| 2.01 | 6.51E—05 | 2.01 | 3.69E—02 | 1.24
320 | 1.63E—05| 198 | 1.66E—05| 1.98 | 1.36E—02 | 1.44
640 | 4.06E—06 | 2.00 | 4.13E—06 | 2.00 | 4.35E—03 | 1.64
ag = 0.53 ag = 0.54 ag = 10
40 1.26E — 04 — 1.29E — 04 — 1.03E — 01 —
80 1.76E—-05| 2.83 | 1.81E—05 | 2.83 | 4.35E—02 | 1.24
k=2 160 | 2.34E—-06 | 292 | 239E—-06 | 2.92 | 1.40E—02 | 1.63
320 | 3.04E—-07 | 294 | 3.10E—07 | 2.95 | 3.50E —03 | 2.00
640 | 4.10E—-08 | 2.89 | 3.94E—-08 | 2.98 | 6.75E —04 | 2.37

where the diffusion coefficient a(u) = u?+1, the initial condition u(z, y,0) = sin(z+y),
the exact solution is u(x,y,t) = e 2 sin(x + y), and the source term

flz,y,t) =e % ( =1+ 2e* cos(z +y) — 3cos(2(z + y))) sin(z + ).

We take the stabilization parameter as a; = agmax,»{(u")? + 1}. In Table 7, we
display the numerical results for our proposed schemes, which present the optimal
orders of accuracy of ag = 0.5 and ay = 0.54 for the first order, second order, and
third order EIN-DDG scheme. In addition, this table shows the slow progress of the
numerical orders of accuracy towards the asymptotic value for the case of ay = 10.
However, the proposed schemes still show stable performance for this equation when
ap = 0.49 and ag = 0.53 due to the meshes not being refined enough.

4.2. Computational efficiency

In this subsection, we compare the computational efficiency of the third order
EX-RK-DDG and EIN-DDG schemes in reaching the steady state for one- and two-
dimensional convection-diffusion equations to demonstrate the advantages of our pro-
posed methods. In the following examples, the steady state is assumed to be achieved
when the residual is less than 10719,
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Example 4.8. We solver the one-dimensional linear convection-diffusion equation

{ut + cuy = augy, x €10, 1], (4.9)

u(0)=1, wu(l)=2

with ¢ = 1,a = 0.01. The initial condition is

c

u(z,0) =1+ e a7,

Example 4.9. Here, we consider the linear convection-diffusion equation with a source
term

{ut + Uy = AUy, + aw? sin(rz) + weos(wx), x € [0,1], 4.10)

w(0) =0, u(l)=1

with a = 0.01, the initial condition is

a—1
u(z,0) = sin(mz) + el
ea —1

Example 4.10. In this example, we consider the following viscous Burgers’ equation:

1
ur + <§u2> = Uy, “4.11)

augmented with « = 0.01, the boundary condition is «(0) = 1.0,u(1) = 2.0, and the
initial condition is determined by
2
)= — ¥ — 1.
w0 =1 —ealm0))3

Example 4.11. We solve the one-dimensional viscous Burgers’ equation with a source
term

{ut—i—uxu:aumm+f(x) in Q=[-1,1], 4.12)

u(£1) =0,
where a = 0.01, the initial condition is
u(z,0) =sin(nz), f(z) = an®sin(rz) + 7 cos(rx) sin(rz).
Example 4.12. Next, we consider the convection-diffusion equation in two-dimension
U+ Uy = a(Ugy +uyy), 0<z,y<1 (4.13)

with a = 0.01, the initial condition is

u(z,y,0) = e2a sin(my) 2¢ 2 sinh(ox) + sinho(1 — x)],

sinh o

where 02 = 72 + 0.25/a%. The initial condition gives the boundary conditions for this
equation.
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Example 4.13. We solver the two-dimensional convection-diffusion equation with a

source term

U + Uy + Uy = a(Ugy + Uyy) —

x (2° + 62" + y*(y + 6y° — 5a) — ba'a) ,

1 a4
—b6e a
a

where a = 0.01, the initial condition is

u(z,y,0) =e

xG-HG

a
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0<x,y<1,

The initial condition gives the boundary conditions for this equation.

Tables 8-13 show the maximum time-steps max, the number of time-steps nt, the
numerical steady time ¢, and the CPU time to reach the steady state for the Egs. (4.9)-
(4.14). These tables demonstrate that our third order EIN-DDG scheme permits a con-
siderably larger time-step than the third order EX-RK-DDG scheme, thereby reducing

Table 8: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and the
CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme for

the Eq. (4.9) with N =200, ¢ =1 and a = 0.01.

aop Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 9.65E-05 | 7,554 | 0.7290 14.752
1.2 | 0.0450 448 | 20.1600 2.607
3rd order EIN-DDG 1.5 0.0495 1,377 | 68.1615 7.939
2.0 | 0.0540 | 1,640 | 88.5600 10.016

Table 9: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and the
CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme for
the Eq. (4.10) with N = 200 and a = 0.01.

ag Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 9.55E-05 | 18,135 1.7319 31.361
1.2 | 0.0455 1,124 | 51.1420 6.210
3rd order EIN-DDG | 1.5 | 0.0497 2,620 | 130.2140 14.809
2.0 | 0.0543 3,021 | 163.8890 18.572

Table 10: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme

for the Eq. (4.11) with N =200 and a = 0.01.

ag Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 9.38E-05 | 6,739 | 0.6318 14.490
1.2 | 0.0455 440 | 20.0200 2.585
3rd order EIN-DDG | 1.5 | 0.0500 | 1,418 | 70.9000 7.219
2.0 | 0.0535 | 1,154 | 61.7390 6.796
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Table 11: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme

for the Eq. (4.12) with N =200 and a = 0.01.

ap Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 3.64E-04 | 11,147 | 4.0575 25.816
1.2 | 0.0475 105 4.9875 0.688
3rd order EIN-DDG | 1.5 | 0.0525 228 11.9700 1.421
2.0 | 0.0583 1,248 | 72.7584 5.430

Table 12: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme

for the Eq. (4.13) with N =100 and a = 0.01.

ag Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 3.15E-04 | 5,338 | 1.6815 2537.570
1.2 | 0.0430 353 | 15.1790 636.299
3rd order EIN-DDG | 1.5 | 0.0475 432 | 20.5200 834.667
2.0 | 0.0505 301 | 15.2005 583.315

Table 13: The maximum time-steps Tmax, the number of time-steps nt, the numerical steady time ¢, and
the CPU time required to reach the steady state for third order EX-RK-DDG scheme and EIN-DDG scheme

for the Eq. (4.14) with N = 100 and a = 0.01.

aop Tmax nt t CPU time (s)
3rd order EX-RK-DDG | — | 3.00E-04 | 6,267 | 1.8801 2401.780
1.2 | 0.0210 135 2.8350 263.433
3rd order EIN-DDG | 1.5 | 0.0240 428 | 10.2720 794.163
2.0 | 0.0260 304 7.9040 533.847

CPU time. For example, Tables 8 and 9 show that the computational time of the third
order EIN-DDG scheme with ay = 1.5 is reduced by 46.2% and 52.8%, respectively, com-
pared to the third order EX-RK-DDG scheme. Furthermore, when ay = 2.0, Tables 12
and 13 indicate that the CPU time of the third order EIN-DDG scheme can decrease by
77.0% and 77.8%, respectively, in contrast with the third order EX-RK-DDG scheme for
the two-dimensional equations (4.13) and (4.14). These results demonstrate the high
computational efficiency of the proposed methods.

5. Concluding remarks

We have developed the DDG method coupled with the EIN time-marching meth-
ods for diffusion equations and convection-diffusion equations in both one- and two-
dimensional cases. We have demonstrated that the schemes are stable with a relaxed
time-step restriction and an appropriate stabilization parameter ag. To verify the va-
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lidity of our proposed method, we tested some numerical experiments, including one-
dimensional and two-dimensional linear and nonlinear equations. The numerical re-
sults show that the first order and second order EIN-DDG schemes are stable and can
obtain the optimal orders of accuracy if ag > 0.5, and the third order EIN-DDG scheme
holds when ay > 0.54. We also presented the computational efficiency of the EX-
RK-DDG and EIN-DDG schemes for reaching the steady state in convection-diffusion
equations, demonstrating the effectiveness of our EIN-DDG scheme. In the future, we
will explore the application of the EIN-DDG scheme for equations with non-periodic
boundary conditions and non-uniform meshes.
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