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Abstract. In this paper, we propose a novel algorithm for finding Cheeger cuts via
1-Laplacian of graphs. In [6], Chang introduced the theory of 1-Laplacian of graphs

and built the connection between searching for the Cheeger cut of an undirected and

unweighted graph and finding the first nonzero eigenvalue of 1-Laplacian, the latter
of which is equivalent to solving a constrained non-convex optimization problem.

We develop an alternating direction method of multipliers based algorithm to solve

the optimization problem. We also prove that the generated sequence is bounded
and it thus has a convergent subsequence. To find the goal optimal solution to the

problem, we apply the proposed algorithm using different initial guesses and select
the cut with the smallest cut value as the desired cut. Experimental results are

presented for typical graphs, including Petersen’s graph and Cockroach graphs, and

the well-known Zachary karate club graph.
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1. Introduction

Partitioning a large dataset into a prescribed number of subsets is a fundamen-

tal problem in machine learning and it has many applications in the fields ranging

from computer sciences, statistics, computational biology, image processing, neural

networks, and social sciences, etc. For instance, in the field of image processing, image

segmentation can be regarded as a clustering problem that aims to partition a given

image domain into several parts in order to capture target objects or extract features

depicted in images. The community detection problem is also a clustering problem,

aiming to divide a community into two or more smaller communities, each of which

shares similar preference or homogeneity. For example, for the well-known Zachary’s
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karate club network [25], there are 34 members and 78 edges, and each edge indicates

the associated two members interacted or were friends. One interesting question is to

split this network into two groups such that members in each group have some tight

connection and members in different groups are only loosely connected. In chemical

engineering, cutting 3D crystals into two separate partitions by severing a minimum

number of bonds assumes a large variety of technological applications [23]. Those

crystals can also be described as graphs with atoms for nodes and bonds for edges.

All the above mentioned datasets can be expressed as graphs with nodes and edges.

The partition of those data sets is indeed a graph cut problem, whose objective is to split

a data set into sensible subsets such that points or nodes in each subset share some sim-

ilarity or homogeneity while points in different subsets are dissimilar. Spectral graph

theory [10] is one of the most successful mathematical tools for tackling graph cut

problems. It employs the characteristic polynomials, eigenvalues, and eigenvectors of

matrices that are associated with a given graph, including the graph Laplacian matrix,

adjacency matrix, and so on. Its appealing feature lies in the fact that the properties

of a graph, such as connectivity and symmetry, can be determined by the spectrum of

those matrices.

To find some appropriate cut, specific energy functions or cut functions are often

designed for graphs. In the literature, many different cuts have been proposed, includ-

ing the Cheeger cut [8], the ratio cut [13], the normalized cut [19], etc. The Cheeger

cut is one of the most important cuts and it originates from the well-known Cheeger’s

inequality from Riemannian geometry, where Cheeger proved an inequality that in-

volves the first nontrivial eigenvalue of the Laplace-Beltrami operator on a compact

Riemannian manifold. The Cheeger cut is a discrete analogue that associates with the

graph Laplacian matrix.

Solving those cut problems is usually NP-hard and one has to resort to approximate

solutions. Spectral graph theory provides the most popular approaches for obtaining

such approximate solutions of the original cut problems [10, 22]. By using spectral

graph theory, the original cut problem is relaxed to some linear algebra problem that

can be handled easily.

In the literature, lots of research works have focused on the development of relax-

ation of the cut problems [4, 5, 19, 20, 22], especially for the Cheeger cut. Buhler et

al. [5] considered the spectral clustering based on the graph p-Laplacian with p > 1,

and showed that the limit cut, as p → 1+, of thresholding the second eigenvector of

this p-Laplacian converges to the optimal Cheeger cut. In fact, Kawohl et al. [14, 15]

proved that the Cheeger constant equals to the limit of the first eigenvalue of the p-

Laplacian as p → 1+. In a recent work by Bresson et al. [4], they proposed minimizing

the original l1-relaxation of the Cheeger cut by employing the augmented Lagrangian

method [11]. Even though these relaxations have produced lots of promising cluster-

ing results for a variety of practical problems, they only provide approximations for

Cheeger cuts. Recently, Chang [6] developed a novel nonlinear spectral graph theory

and systematically studied the 1-Laplacian of graphs, including the associated eigen-

value problem and the structure of its solutions. Most importantly, in this work, for
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the first time, Chang proved that the Cheeger’s constant is equal to the first nonzero

eigenvalue of the 1-Laplacian for a connected graph and the seek of the correspond-

ing eigenvector amounts to solving a constrained optimization. This is totally different

from the linear spectral theory, which merely provides lower and upper bounds for the

Cheeger’s constant.

However, solving the above-mentioned constrained optimization problem is also

very challenging. As detailed later, the optimization problem consists of a nondiffer-

entiable objective function over a non-convex domain. Especially, the domain consists

of more than 3[(n+1)/2] − 1 simplex cells for a graph with n vertices, where [x] repre-

sents the nearest integer that is less than or equal to x. In this paper, we propose using

the augmented Lagrangian method (ALM) [11, 17] or alternating direction method of

multipliers (ADMM) to solve the above optimization problem.

In the past decade, ALM/ADMM has been successfully applied for nonlinear, non-

differentiable, and high-order variational models in image processing [1,12,21,24,26–

30]. An appealing feature of using ALM/ADMM lies in the fact that solving the original

optimization minimization amounts to the seek of saddle point of some augmented La-

grangian functional, which can be carried out by minimizing several relatively simpler

functionals repeatedly and alternatingly. Usually these resulting functionals could have

closed-form solutions.

The rest of the paper is organized as follows. In Section 2, we review Cheeger cut

and Chang’s work on 1-Laplacian of graphs, especially for the constrained optimization

problem for finding the Cheeger cut. We then develop an ALM/ADMM based algorithm

for solving the optimization problem in Section 3, where we detail how to solve those

sub-problems. Numerical experiments are then presented in Section 5 by applying the

proposed algorithm for typical graphs including Cockroach graphs, Petersen graph, and

Zachary club graph, which is followed by our conclusion in Section 6.

2. Review of Cheeger cut and 1-Laplacian for graphs

In this section, we review a recent work by Chang [6], where the nonlinear spectral

theory for graphs was first developed in the literature. Specifically, Chang introduced

the 1-Laplacian operator for a graph and studied the spectrum. Most importantly, in

this work, for the first time, Chang discovered the marvelous connection between the

Cheeger’s constant and the second eigenvalue of 1-Laplacian ∆1 for any connected

graph.

Let G = (V,E) be an undirected and unweighted graph with vertices V = {1, . . . , n}
and edge set E. Each edge e ∈ E is a pair of vertices (i, j). For each vertex i, its

degree, denoted as di, represents the number of edges passing through it. For any two

subsets S and T of V , the set E(S, T ) = {(i, j) ∈ E : i ∈ S, j ∈ T} collects all the

edges between S and T . The edge boundary of S is defined as ∂S = E(S, Sc), where

Sc = V \ S, the complement of S. The volume of S is defined as Vol(S) =
∑

i∈S di.
With these notations, one could introduce the well-known Cheeger constant for the
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graph as follows:

h(G) = min
S⊂V

|∂S|
min{Vol(S),Vol(Sc)} , (2.1)

where |∂S| is the cardinality of ∂S. A partition (S, Sc) of V is called a Cheeger cut of

the graph G if the Cheeger constant is attained for the set S.

As discussed in the introduction, finding the Cheeger cut of a graph is an NP-hard

problem. In the literature, many approaches have been proposed to approximate the

solution [3–5, 19, 22]. One of the most popular methods is due to the spectral graphy

theory [10]. Based on the theory, the standard graph Laplacian is defined for the graph

G = (V,E) as L = D−A, where D = diag(d1, . . . , dn) is a diagonal matrix and A = [aij ]
is the adjacency matrix with aij = 1 if (i, j) ∈ E and aij = 0 if (i, j) /∈ E. The matrix

L has eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn and its second eigenvalue λ2 can be used to

give bounds for the Cheeger’s constant, that is, the Cheeger inequality,

λ2

2
≤ h(G) ≤

√
2λ2. (2.2)

Due to this relation, to approximate the Cheeger cut, one could find the associated

eigenvector of λ2 and use the sign of its elements or apply some threshold to them to

obtain a cut. Later on, in [5], to get more tight approximation to the Cheeger cut, the

graph p-Laplacian with p ∈ (1, 2) was introduced as follows:

(∆px)i =
∑

j∼i

|xi − xj |p−1sign(xi − xj), (2.3)

where j ∼ i denotes the edge (i, j) ∈ E and sign(t) is the standard sign function, which

reads

sign(t) =





1, if t > 0,

0, if t = 0,

−1, if t < 0.

In [5], the authors proved that, by thresholding the second eigenvector of this p-

Laplacian, the resulting cut converges to the Cheeger cut as p → 1+.

All these methods give only approximations to the Cheeger cut problem. Recently,

Chang [6] developed a novel nonlinear spectral graph theory to study properties of

graphs via 1-Laplacian operator.

In what follows, we recall the key details of Chang’s theory on the spectrum of

1-Laplacian on graphs.

For an undirected and unweighted graph G = (V,E) with a vertex set V = {1, . . . , n}
and an edge set E, each edge e is a pair of vertices and one could assign an orientation

as follows: if x is the head of e, denote x = eh; if y is the tail of e, denote y = et. With

this notation, an m× n incidence matrix B = [bei] can be introduced

bei =





1, if i = eh,

−1, if i = et,

0, if i /∈ e,

(2.4)

where m is the number of edges in E.
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In the spectral graph theory [10], the following Dirichlet function was introduced

to study the properties of a graph:

J(x) =
1

2

n∑

i=1

∑

j∼i

(xi − xj)
2, (2.5)

while Chang [6] considered the following energy function:

I(x) =
∑

j∼i

|xi − xj |. (2.6)

Note that the subdifferential of the convex function t → |t| is the set valued function

∂|t| = Sgn(t), which reads

Sgn(t) =





1, if t > 0,

−1, if t < 0,

[−1, 1], if t = 0.

(2.7)

Then one can consider the subdifferential of the non-differentiable function I(x). For

this, Chang [6] proved the following theorem:

Theorem 2.1 ([6, Theorem 2.1]). For any x ∈ R
n, u ∈ ∂I(x) if and only if there exists

a function z : E → R such that u = BT z and ze(Bx)e = |(Bx)e|.
Note that in this theorem, (Bx)e is the entry associated with the edge e ∈ E. For

instance, if e is the first edge in the set E, (Bx)e denotes the first entry of the vector

Bx. Moreover, ze = z(e) represents a real number in [−1, 1] for the edge e. As shown

in this theorem, for the edge e = (i, j), ze = ∂|xi − xj|/∂xi. Specifically, ze = 1 if

xi > xj, ze = −1 if xi < xj, and ze = c for some c ∈ [−1, 1] if xi = xj. Therefore,

ze ∈ Sgn(xi − xj) for e = (i, j).
To introduce the concept of 1-Laplacian on the graph G, the following definition

was given in [6].

Definition 2.1 ([6, Definition 2.3]). For a given graph G = (V,E), the set valued map

∆1(G) : x → {BT z|z : E → R is an R
m-vector, satisfying ze(Bx)e = |(Bx)e|} is called

the 1-Laplacian on the graph G.

Then the 1-Laplacian operator on graph can be expressed as

∆1(G)x = BTSgn(Bx), (2.8)

where Sgn(y) = (Sgn(y1), . . . ,Sgn(ym)) for y = (y1, . . . , ym) ∈ R
m. One can see that

this definition of 1-Laplacian is independent of the choice of orientation of edges.

With the above definition and the set

X =

{
x = (x1, . . . , xn) ∈ R

n :
n∑

i=1

di|xi| = 1

}
, (2.9)

one can define the eigenvalue problem associated with the 1-Laplacian ∆1(G) as fol-

lows:
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Definition 2.2 ([6, Definition 2.4]). (µ, x) ∈ R × X is called an eigenpair of the 1-

Laplacian ∆1(G) on G = (V,E), if

µDSgn(x) ∩∆1(G)x 6= 0, (2.10)

where D = diag(d1, . . . , dn).

In this eigenpair (µ, x), µ is called an eigenvalue of ∆1(G) and x is the associated

eigenvector.

For any vector x = (x1, . . . , xn) ∈ R
n, the vertex set V can be split in three groups:

D0(x) = {i ∈ V : xi = 0}, D±(x) = {i ∈ V : ±xi > 0}

and one can define δ0(x) =
∑

i∈D0 di, δ
±(x) =

∑
i∈D± di, and hence δ0(x) + δ+(x) +

δ−(x) = d, where d =
∑n

i=1 di. With these notations, a special subset π of X is

introduced

π =
{
x = (x1, . . . , xn) ∈ X : |δ+(x)− δ−(x)| ≤ δ0(x)

}
. (2.11)

Chang [6] proved any eigenvector x of 1-Laplacian ∆1(G) with eigenvalue µ 6= 0 must

lie in the set π. Let K denote the set of all critical points of I(x) over X. Chang

showed that K is the same as the set of all eigenvectors of ∆1(G). By studying the

critical points of I(x), Chang also proved that the spectrum of ∆1(G) is discrete and any

eigenvalue lies in the interval [0, 1], and therefore those eigenvalues can be arranged

as 0 = µ1 ≤ µ2 ≤ · · · ≤ 1.

Most importantly, for the first time, Chang discovered a direct connection between

the Cheeger cut and the second eigenvalue of ∆1(G) that can be summarized in the

following two theorems:

Theorem 2.2 ([6, Theorem 5.12]). If G = (V,E) is connected, then µ2 = m, where

m = min{I(x) : x ∈ π}.

Theorem 2.3 ([6, Theorem 5.15]). If G = (V,E) is connected, then µ2 = h(G).

Therefore, to get the Cheeger cut, we need to find the second eigenvalue of the

1-Laplacian ∆1(G), which can be obtained by searching for the minimizer of I(x) over

the set π ⊂ X. This minimizer or the second eigenvector x determines the Cheeger cut

(S, Sc) by setting S = D+(x) or S = D−(x).
In a nutshell, finding the Cheeger cut of a given graph G = (V,E) amounts to solv-

ing an optimization problem. As the set X is composed of cells of different dimensions,

one could search for the minimizer over each of these cells. However, there are as many

as 3[(n+1)/2] − 1 cells in the set π, and therefore this way of searching for the minimizer

is NP-hard.

Chang et al. [7] developed a numerical algorithm called the cell descend (CD) to

find the minimizer of I(x) over the set π. The idea is as follows: as the objective

function I(x) is convex over each sub-cell of π, one could easily get the minimizer

over one cell and then search for another cell in order to further minimize the function
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I(x) until no decreasing direction can be obtained. Numerical experiments for typical

graphs of small size, as their Cheeger cuts can be obtained theoretically were reported

in [7]. Recently, another interesting work on finding balanced graph cut was proposed

by Shao and Yang [18].

In this work, we develop an ALM/ADMM based algorithm to solve the optimization

problem in order to find the Cheeger cut for a given graph.

3. ADMM for finding Cheeger cuts

In this section, we discuss the details of our ADMM based algorithm to solve the

Cheeger cut problem for a given graph by using the theory developed by Chang [6].

In what follows, we use ‖x‖p to represent the p-norm of a vector x ∈ R
n. As

discussed in [6] and reviewed above, to find the Cheeger cut for a given graph G =
(V,E) with V = {1, . . . , n}, one needs to solve the following optimization problem:

min I(x)

s.t. x ∈ π =
{
x ∈ X : |δ+(x)− δ−(x)| ≤ δ0(x)

}
,

(3.1)

where

I(x) =
∑

j∼i

|xi − xj | =
∑

e∈E

|(Bx)e|.

The difficulties of tackling this problem lie in two aspects: first, the object function

I(x) is non-differentiable; second, besides being non-convex, the set π also imposes

a strict constraint on the sign of the elements of the vector x, which raises another

challenging issue for the seek of minimizer.

To deal with this tough optimization problem, we develop an ALM/ADMM based

algorithm. ALM/ADMM has proven to be very successful in designing fast algorithms

for variational imaging models with higher-order terms or/and non-differential terms

during the past decade [21,24,26–31].

Note that I(x) can be rewritten as I(x) = ‖Bx‖1. We recast the optimization

problem (3.1) as an equivalent one

min ‖y‖1 + δπ(z)

s.t. y = Bx, x = z,
(3.2)

where the indicator function δπ is defined as

δπ(x) =

{
0, if x ∈ π,

∞, if x /∈ π.

Then we consider the following augmented Lagrangian functional:

L(x, y, z;λ1, λ2) = ‖y‖1 +
r1
2
‖y −Bx+ λ1‖22 +

r2
2
‖x− z + λ2‖22 + δπ(z), (3.3)

where λ1 ∈ R
m, λ2 ∈ R

n are Lagrange multipliers and r1, r2 > 0 are penalty parameters.
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Based on the optimization theory, to find the minimizer of I(x) over the set π, one

needs to obtain a saddle point of the augmented Lagrangian functional (3.3). For this,

one can propose the ADMM to find the saddle point. Specifically, we minimize the

corresponding subproblem for each of the variables x, y, and z respectively by fixing

the other variables and then advance the Lagrange multipliers λ1 and λ2 accordingly;

this process will be repeated until some criterion is met. This iterative method for

approximating the saddle point of the functional (3.3) is given in Algorithm 3.1.

Algorithm 3.1 ADMM for the Minimization of (3.1).

1: Initialization: x0, y0, z0, λ0
1, λ

0
2.

2: for k ≥ 1 do

3: Compute the minimizer xk, yk, zk for the associated sub-problems with fixed

Lagrange multipliers λk−1
1 and λk−1

2

xk+1 = argminxL
(
x, yk, zk;λk

1 , λ
k
2

)
, (3.4)

yk+1 = argminyL
(
xk+1, y, zk;λk

1 , λ
k
2

)
, (3.5)

zk+1 = argminzL
(
xk+1, yk+1, z;λk

1 , λ
k
2

)
. (3.6)

4: Update the Lagrange multipliers

λk+1
1 = λk

1 + yk+1 −Bxk+1, (3.7)

λk+1
2 = λk

2 + xk+1 − zk+1. (3.8)

5: Stop the iteration if some criterion is met.

6: end for

In what follows, we discuss how to solve the three sub-problems (3.4)-(3.6) one by

one.

3.1. The sub-problems for the variables x and y

For the sub-problem (3.4), one needs to find the minimizer of the function

ε1(x) =
r1
2

∥∥yk −Bx+ λk
1

∥∥2
2
+

r2
2

∥∥x− zk + λk
2

∥∥2
2
. (3.9)

Its minimizer is given by the following equation:

(
r1B

TB + r2In
)
x = r1B

T
(
yk + λk

1

)
+ r2

(
zk − λk

2

)
, (3.10)

where In represents the n×n identity matrix. As the coefficient matrix r1B
TB+r2In is

symmetric positive definite, the system can be readily solved using the preconditioned

conjugate gradients method (PCG).
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As for the sub-problem (3.5), the associated function to be minimized can be ex-

pressed as follows:

ε2(y) = ‖y‖1 +
r1
2
‖y − a‖22, (3.11)

where a = [a1, . . . , am]T = Bxk+1 − λk
1. This is a Lasso problem and its minimizer

y = [y1, . . . , ym]T is given for the ith component as follows:

yi =





0, if |ai| ≤
1

r1
,

(
1− 1

r1|ai|

)
ai, if |ai| >

1

r1
.

(3.12)

3.2. The sub-problem for the variable z

We next discuss how to solve the third sub-problem (3.6), which can re-formulated

as an equivalent problem
min ‖z − b‖2
s.t. z ∈ π,

(3.13)

where b = xk+1 + λk
2 . Geometrically, this problem seeks the projection of the point

b ∈ R
n on the set π. Note that the set

π =

{
x ∈ R

n :
n∑

i=1

di|xi| = 1, |δ+(x)− δ−(x)| ≤ δ0(x)

}
,

the projection is only onto some simplex cells of the set X = {x ∈ R
n :

∑n
i=1 di|xi| = 1}.

To solve this challenging problem, we propose two steps: 1) we first relax the problem

to be the projection onto X; 2) we then adjust the obtained projection to meet the

requirement |δ+(x)− δ−(x)| ≤ δ0(x).
For the first step, it is easy to prove the following lemma.

Lemma 3.1. Let b, c ∈ R
n and c is a projection of b onto the set X, then bici ≥ 0, i =

1, . . . , n, where bi and ci are the i-th components of b and c, respectively.

This lemma suggests that we only need to consider the problem of projecting a vec-

tor b with bi ≥ 0, i = 1, . . . , n onto the simplex cell of X with all nonnegative variables,

which reads as follows:

min ‖y − b‖2

s.t.

n∑

i=1

diyi = 1, yi ≥ 0, i = 1, . . . , n.
(3.14)

For the simplicity of presentation, denote Y = {y = (y1, . . . , yn) ∈ R
n :

∑n
i=1 diyi = 1,

yi ≥ 0, i = 1, . . . , n} and T = {i ∈ V : yi > 0}.

To solve this projection problem (3.14), let us first see its property.
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Lemma 3.2. Let b = (b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n, y = (y1, . . . , yn) ∈ R

n

be its projection onto the set Y . Then for any i, j ∈ T with i 6= j,

yi − bi
di

=
yj − bj

dj
. (3.15)

Proof. If i, j ∈ T and i 6= j, one considers the perturbation ŷǫ = (ŷ1, . . . , ŷn) of the

projection y = (y1, . . . , yn) as follows: ŷk = yk for k 6= i, j, ŷi = yi − djǫ, ŷj = yj + diǫ
for ǫ ∈ (−yj/di, yi/dj). One can see that ŷǫ ∈ Y for ǫ ∈ (−yj/di, yi/dj). As y is the

projection of b onto Y , the function h(ǫ) = ‖ŷ− b‖22 attains its minimum value at 0, and

hence h′(0) = 2(yi − bi)(−dj) + 2(yj − bj)di = 0, which leads to the conclusion.

This lemma implies an explicit form of this projection of b onto Y , as stated in the

following theorem.

Theorem 3.1. Let b = (b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n, y = (y1, . . . , yn) ∈ R

n

be its projection onto the set Y . Then for any i ∈ T ,

yi = bi + di
1−∑

j∈T bjdj∑
j∈T d2j

. (3.16)

Proof. Based on Lemma 3.2, there exists a constant c such that (yi − bi)/di = c
for any i ∈ T , and then yi = bi + cdi for i ∈ T . As

∑n
i=1 diyi = 1, one gets c =

(1−∑
j∈T bjdj)/

∑
j∈T d2j and thus completes the proof.

The above theorem provides an explicit form of the projection onto the set Y once

the index set T is known. However, how to determine this set? For this, we propose

the idea of finding a simplex cell, a subset of the set Y such that all the components of

the projection are positive. In fact, this goal simplex cell can be found using a recursive

method. To this end, let us introduce the following lemmas.

Lemma 3.3. Let b = (b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n. Then its projection

y = (y1, . . . , yn) onto the hyperplane H = {x ∈ R
n :

∑n
i=1 dixi = 1} can be expressed as

yi = bi + cdi, i = 1, . . . , n, where c = (1−∑n
i=1 bidi)/

∑n
i=1 d

2
i .

This lemma can be easily justified using the method of Lagrange multiplier.

Note that in this lemma, the point is projected onto the whole hyperplane, not the

simplex cell Y . In this lemma, if yi ≥ 0 for i = 1, . . . , n, then this projection is inside

the cell Y , which means the projection problem (3.14) is solved. If some component

is negative, one needs to further project the above projection point onto some lower-

dimensional simplex cell of Y . To elucidate this argument, we introduce the following

lemma.

Lemma 3.4. Let b = (b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n, y∗ = (y∗1 , . . . , y

∗
n) ∈ R

n

be its projection onto the hyperplane H = {x ∈ R
n :

∑n
i=1 dixi = 1}. Assume that y∗1 < 0
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and y∗i ≥ 0 for i = 2, . . . , n. Then the projection problem (3.14) is equivalent to the

following one:

min ‖y − y∗‖2

s.t. y1 = 0,

n∑

i=2

diyi = 1, yi ≥ 0, i = 2, . . . , n.
(3.17)

Proof. For any point x = (x1, . . . , xn) ∈ Y ⊂ H, by connecting it with y∗, one gets

the line which can be represented as yi = y∗i + t(xi − y∗i ), i = 1, . . . , n with t being

a parameter. This line intersects the simplex cell Y at

ŷ =
(
0, y∗2 + t∗(x2 − y∗2), . . . , y

∗
n + t∗(xn − y∗n)

)

with t∗ = y∗1/(y
∗
1 − x1). In fact,

y∗i + t∗(xi − y∗i ) =
(xiy

∗
1 − x1y

∗
i )

(y∗1 − x1)
≥ 0, i = 2, . . . , n.

As y∗1 < 0, t∗ falls in (0, 1), that is, this intersection ŷ lies between x and y∗, and by the

Pythagorean theorem,

‖x− b‖22 = ‖x− y∗‖22 + ‖y∗ − b‖22 ≥ ‖ŷ − y∗‖22 + ‖y∗ − b‖22 = ‖ŷ − b‖22.

Therefore, to find the projection of b onto Y , one only needs to find the projection

onto its subset simplex cell {y = (y1, . . . , yn) ∈ R
n : y1 = 0,

∑n
i=2 diyi = 1, yi ≥ 0, i =

2, . . . , n}.

Based on the same argument, one could also obtain the same conclusion if y∗1 is re-

placed by any other component while the remaining components are all non-negative.

This lemma guarantees that the seek of the projection onto Y amounts to finding the

projection onto a subset of Y .

In this lemma, only one component of y∗ is assumed to be negative. In fact, based

on similar arguments, we can prove the following theorem.

Theorem 3.2. Let b = (b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n and y∗ = (y∗1, . . . , y

∗
n) ∈

R
n be its projection onto the hyperplane H = {x ∈ R

n :
∑n

i=1 dixi = 1}. Let A and B
be two disjoint subsets of V = {1, . . . , n} and A ∪ B = V . Assume that y∗i < 0 for any

i ∈ A and y∗j ≥ 0 for any j ∈ B. Then the projection problem (3.14) is equivalent to the

following one:

min ‖y − y∗‖2
s.t. yi = 0, for any i ∈ A and

∑

j∈B

djyj = 1, yj ≥ 0, j ∈ B. (3.18)

Proof. Just as the proof in Lemma 3.4, one needs to show that the line connecting

any point x ∈ Y and y∗ must pass through the lower-dimensional simplex cell {y ∈
R
n : yi = 0 for i ∈ A, yj ≥ 0 for j ∈ B,

∑
j∈B djyj = 1}.
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Suppose that A = {i1, . . . , ik} and B = {j1, . . . , jn−k}. Let us first consider any

point x = (x1, . . . , xn) ∈ Y with xi > 0, i = 1, . . . , n. Without loss of generality, assume

that
y∗i1
xi1

≤
y∗i2
xi2

≤ · · · ≤
y∗ik
xik

.

As the line connecting x and y∗ can be expressed as

yi = y∗i + t(xi − y∗i ), i = 1, . . . , n

with t being a parameter, it intersects the hyper-plane {(y1, . . . , yn) : yi1 = 0,
∑

j 6=i1
djyj

= 1} at z = (z1, . . . , zn), where

zi1 = 0, zip = y∗ip + t∗(xip − y∗ip), p = 2, . . . , k,

zjq = y∗jq + t∗(xjq − y∗jq), q = 1, . . . , n− k,

and t∗ = y∗i1/(y
∗
i1
− xi1). Then

zip =
xi1xip

y∗i1 − xi1

(
y∗i1
xi1

−
y∗ip
xip

)
, p = 2, . . . , k,

zjq =
xi1xjq

y∗i1 − xi1

(
y∗i1
xi1

−
y∗jq
xjq

)
, q = 1, . . . , n− k.

By the above assumption, one has zip ≥ 0, p = 2, . . . , k. Note that y∗jq ≥ 0 for q =
1, . . . , n − k and y∗i1 < 0, one also has zjq ≥ 0, q = 1, . . . , n − k. Therefore, this

intersection point z lies in the lower-dimensional simplex cell Si1 := {(y1, . . . , yn) :
yi1 = 0,

∑
j 6=i1

djyj = 1, yj ≥ 0} ⊂ Y , which shows that ‖x − y∗‖2 ≥ ‖z − y∗‖2.

Similarly, for any x ∈ Y with xi > 0, i = 1, . . . , n, if is = argminp∈A(y
∗
p/xp), then the

line connecting y∗ and x intersects at a point in the simplex cell Sis .

Based on the above argument, to get the projection of y∗ onto Y , one only needs

to find its projections onto its sub-cells Sip , p = 1, . . . , k and compare them to get the

desired one. In what follows, we intend to show that the projection onto these sub-cells

is equivalent to the projection onto their intersection cell

S =

{
y = (y1, . . . , yn) : yi = 0, for i ∈ A, yj ≥ 0, for j ∈ B,

∑

j∈B

djyj = 1

}
.

To justify this claim, let us consider the projection of y∗ onto the sub-cell Si1 . Assume

that y = (y1, . . . , yn) ∈ Si1 is the projection point, and then yi1 = 0 and yj ≥ 0 for all j
except i1. We want to show that yip = 0 for p = 2, . . . , k. If yi2 > 0, for any jq ∈ B, we

consider a perturbation point ŷǫ = (ŷǫ1, . . . , ŷ
ǫ
n), where ŷǫi2 = yi2 − ǫ, ŷǫjq = yjq +di2/djqǫ,

and ŷǫi = yi for all i 6= i2, jq. It is easy to see that ŷǫ ∈ Si1 for each ǫ ∈ [0, yi2).
Then the function f(ǫ) = ‖ŷǫ − y∗‖22 takes its minimum value at ǫ = 0, therefore

f ′(0) = −2(yi2 − y∗i2) + 2(yjq − y∗jq)di2/djq ≥ 0, and then yjq − y∗jq/djq ≥ yi2 − y∗i2/di2
for any jq ∈ B.
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Set λ = (yi2 − y∗i2)/di2 , then λ > 0 and yjq − y∗jq ≥ λdjq for all jq ∈ B. Then

1 =
∑

i∈A

diyi +
∑

j∈B

djyj

≥
∑

i∈A

diyi +
∑

j∈B

dj(y
∗
j + λdj)

≥ di2yi2 + 1−
∑

i∈A

diy
∗
i + λ

∑

j∈B

d2j . (3.19)

Therefore, as y∗i < 0 for all i ∈ A, one gets

0 > −di2yi2 ≥ −
∑

i∈A

diy
∗
i + λ

∑

j∈B

d2j > 0,

which leads to a contradiction. This justifies that yi2 ≤ 0.

Similarly, one can show that yip = 0 for p = 3, . . . , k. This means that the projection

of y∗ onto the simplex cell Si1 is in fact inside an even lower-dimensional cell

S =

{
y = (y1, . . . , yn) : yi = 0, for i ∈ A, yj ≥ 0, for j ∈ B,

∑

j∈B

djyj = 1

}
,

which completes the proof.

This theorem converts the projection problem (3.14) to be a similar one (3.18) but

onto a lower-dimensional simplex cell if some component of y∗ are negative. In fact,

the above new problem (3.18) might not guarantee that all the components of the

projection are non-negative. If this occurs, one may repeatedly use the above theorem

until all the components are non-negative. Using this procedure, we can find the exact

solution for the problem (3.14), which leads to the solution of the original projection

problem that projects any point onto the set X. We summarize it as the following

theorem.

Theorem 3.3. For any point b = (b1, . . . , bn) ∈ R
n, suppose y = (y1, . . . , yn) ∈ R

n is the

projection of the point b̃ = (|b1|, . . . , |bn|) onto the set

Y =

{
y = (y1, . . . , yn) ∈ R

n :

n∑

i=1

diyi = 1, yi ≥ 0, i = 1, . . . , n

}
,

then the projection of b onto

X =

{
x ∈ R

n :
n∑

i=1

di|xi| = 1

}

is the point ỹ = (sign(b1)y1, . . . , sign(bn)yn), where ‘sign’ is the sign function.

This theorem is a direct implication of Lemma 3.1.
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Having solved the problem of projecting any point onto the set X, we then need

to find the projection onto π = {x ∈ X : |δ+(x) − δ−(x)| ≤ δ0(x)}, which is a proper

subset of X. If the projection is already inside π, then we find the goal projection, in

other words, the problem (3.13) and thus the sub-problem (3.6) is completely solved.

However, this might not always be the case and we need to re-project the original point

onto some appropriate simplex cell. To determine this cell, we consider an equivalent

form of the sign constraint as follows.

Lemma 3.5 ([7, Lemma 2]). x ∈ π if and only if δ+(x) ≤ d/2 and δ−(x) ≤ d/2, where

d =
∑n

i=1 di.

Suppose that ỹ is the projection of a point b onto X. Based on this lemma, if both

δ+(ỹ) and δ−(ỹ) are not larger than d/2, then ỹ is the goal projection onto π. Otherwise,

we need to adjust the projection to meet the sign constraint to do the projection. To be

specific, denote

ι+ = {i ∈ V : ỹi > 0}, ι− = {i ∈ V : ỹi < 0}.
If δ+(ỹ) > d/2, we need to find a subset of ι1+ ⊂ ι+ such that the total degree

∑
i∈ι1

+
di ≤

d/2. Then the index set ω = ι1+ ∪ ι− forms a sub-simplex cell defined as follows:

Γω,m =

{
y =

∑

i∈ω

yimiei :
∑

i∈ω

diyi = 1, yi > 0,mi = sign(ỹi),∀i ∈ ω

}
, (3.20)

where ei represents the i-th standard basis vector in R
n.

To find the goal projection onto π, we encounter two problems:

1. How to determine all of those subsets of ι1+ of ι+ to form admissible sub-simplex

cells?

2. Once all those sub-simplex cells are obtained, how to get the desired one?

The first problem is in fact the subset sum problem [16]. If δ+(ỹ) > d/2, we denote

gap = δ+(ỹ) − d/2, and find all the subsets of ι+, each of which has the total degree

that lies in [gap, δ+(ỹ)]. Suppose that ι2+ ⊂ ι+ with
∑

i∈ι2
+
di ≥ gap, then ι1+ = ι+ \ ι2+

and ω = ι1+ ∪ ι− gives an index set for an admissible sub-simplex cell Γω,m.

As for the second problem, since ỹ is the projection of b onto X, the projection of b
onto any simplex cell of X gives an equal or larger value than ‖ỹ− b‖2. As a result, one

only needs to compare those value increments over all those admissible simplex-cells

and choose the one with the smallest increment. In fact, to determine the increment

for each sub-simplex cell, we have the following theorem.

Theorem 3.4. Assume that x = (x1, . . . , xn) ∈ R
n is the projection of the point b =

(b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n onto the set X and ι = {i1, . . . , ik} = {i ∈ V :

xi > 0}. If ω ⊂ ι and xω is the projection of b onto the simplex cell

Γω =

{
y =

∑

i∈ω

yiei :
∑

i∈ι

diyi = 1, yi > 0,∀i ∈ ω

}
,
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then

‖xω − b‖22 − ‖xι − b‖22 =
∑

i∈ι\ω

x2i +
(
∑

i∈ι\ω dixi)
2

∑
i∈ι d

2
i −

∑
i∈ι\ω d2i

. (3.21)

Proof. By Theorem 3.1, one has for any i ∈ ι, xi = bi + tdi with t = (1 −∑
i∈ι dibi)/

∑
i∈ι d

2
i .

Similarly, for any i ∈ ω, xω,i = bi + t̂di with t̂ = (1 −∑
i∈ω dibi)/

∑
i∈ω d2i , and for

any i ∈ ι \ ω, xω,i = 0.

As ∑

i∈ι

di(bi + tdi) = 1,
∑

i∈ω

di(bi + t̂di) = 1,

one gets ∑

i∈ι\ω

dixi +
∑

i∈ω

d2i (t− t̂) = 0,

and then

t̂− t =

∑
i∈ι\ω dixi∑
i∈ω d

2
i

=: s.

Therefore,

‖xω − b‖22 − ‖xι − b‖22
=

∑

i∈ι\ω

b2i +
∑

i∈ω

t̂2d2i −
∑

i∈ι

t2d2i

=
∑

i∈ι\ω

b2i +
∑

i∈ω

(t̂2 − t2)d2i −
∑

i∈ι\ω

t2d2i

=
∑

i∈ι\ω

(xi − tdi)
2 +

∑

i∈ω

(s2 + 2ts)d2i −
∑

i∈ι\ω

t2d2i

=
∑

i∈ι\ω

(x2i − 2tdixi) +
∑

i∈ω

(s2 + 2ts)d2i

=
∑

i∈ι\ω

x2i +
∑

i∈ω

s2d2i =
∑

i∈ι\ω

x2i +
(
∑

i∈ι\ω dixi)
2

∑
i∈ι d

2
i −

∑
i∈ι\ω d2i

,

which gives the conclusion.

In a nutshell, for any given point b, one gets its projection x onto X, and checks

whether δ+(x) and δ−(x) are both equal or less than d/2. If δ+(x) > d/2, one sets ι+ =
{i ∈ V : xi > 0} and ι− = {i ∈ V : xi < 0}, and finds all the subsets of ι+ such that

each of them has a total degree equal to or greater than gap = δ+(x)−d/2. Let ι2+ ⊂ ι+
with

∑
i∈ι2

+
di ≥ gap be one of these subsets, then one calculates the corresponding

increment ‖xω − b̂‖22 −‖xι − b̂‖22, where b̂ = (|b1|, . . . , |bn|), ω = ι+ \ ι2+, ι = ι+ ∪ ι−, and

xω and xι are the projection of b̂ onto X. This is because the above theorem holds for

the projection of a point with non-negative entries.
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Based on the above arguments, the sub-problem (3.6) of z is solved, that is, one

finds the projection of any point in R
n onto the set π.

As a summary, we have discussed the methods to solve the three sub-problems

(3.4)-(3.6). Therefore, once the initial (x0, y0, z0;λ0
1, λ

0
2) is given, as shown in (3.4)-

(3.8), a sequence {(xk, yk, zk;λk
1 , λ

k
2)

∞
k=1} can be generated. If this sequence converges

to the saddle point of the augmented Lagrangian functional (3.3), then the original

optimization problem (3.1) is solved.

Even though the above ADMM algorithm provides a viable tool to find the Cheeger

cut for any given undirected and unweighted graph, there still remain two issues. The

first issue is whether the algorithm could give the global minimizer of the optimization

problem (3.1). Note that the optimization problem is defined over a non-convex set,

and the proposed algorithm does not ensure the global minimizer, but merely a local

minimizer. The second issue lies in the computational complexity of solving the subset

sum problem. In fact, it can also be regarded as an NP-hard problem.

To deal with the first problem, in this paper, we propose applying the developed

ADMM with different initial guess (x0, y0, z0) for a given graph and comparing all those

obtained cuts to determine the Cheeger cut. Specifically, among all the obtained cuts,

the cut with the smallest value of

cut(S, Sc) =
|∂S|

min{Vol(S),Vol(Sc)}

is the desired cut. As shown in the numerical experiments section, this procedure could

help find many optimal solutions to the optimization problem (3.1) or Cheeger cuts for

a given graph.

Before discussing how to solve the second problem, we consider a corollary of The-

orem 3.4.

Corollary 3.1. Assume that x = (x1, . . . , xn) ∈ R
n is the projection of the point b =

(b1, . . . , bn) ∈ R
n with bi ≥ 0, i = 1, . . . , n onto the set X and ι = {i1, . . . , ik} = {i ∈ V :

xi > 0}. For any j ∈ {1, . . . , k}, let ωj = ι \ {ij} and xωj
be the projection of b onto the

simplex cell Γωj ,m, then

‖xωj
− b‖22 − ‖xι − b‖22 =

Dx2ij
D − d2ij

, (3.22)

where D =
∑n

i∈ι d
2
i .

To elucidate the method of dealing with the second problem, as discussed before,

we assume x is the projection of b onto X and δ+(x) = {i1, . . . , ik} with δ+(x) > d/2.

Note that b could be any vector in R
n. To apply the above corollary, one needs to

consider the vector b̂ = (|b1|, . . . , |bn|). It is easy to see that the vector (|x1|, . . . , |xn|)
is the projection of b̂. Denote ι = {i1, . . . , ik} ∪ δ−(x) and ωj = ι \ {ij}, j = 1, . . . , k.

We first calculate all the increments gj = Dx2ij/(D − d2ij ), j = 1, . . . , k, and then sort

{gj}, j = 1, . . . , k. For simplicity, let us assume g1 ≤ g2 ≤ · · · ≤ gk. If p = inf{q ∈
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N :
∑q

s=1 dis ≥ δ+(x)− d/2}, then we get the index set ω = {ip+1, . . . , ik} ∪ δ−(x) and

the goal sub-simplex cell is Γω,m as defined in (3.20). The new projection x̂ onto this

simplex cell surely satisfies the sign constraints δ+(x̂) ≤ d/2 and δ−(x̂) ≤ d/2.

The above procedure does not ensure that the projection of b onto the set π can

be found. However, it does give some projection of b onto π. Note that the proposed

algorithm is iterative, and one could solve the sub-problem (3.6) approximately. In

fact, by using this procedure, one could dramatically reduce the computational cost for

solving the sub-problem of z.

4. Convergence analysis

In this section, we discuss the property of the sequence {(xk, yk, zk;λk
1 , λ

k
2)} gen-

erated by Algorithm 3.1. Note that the original optimization problem (3.1) is non-

differentiable and non-convex, especially, the domain consisting of more than 3[(n+1)/2]

−1 simplex cells of different dimensions. This raises a challenging problem for the con-

vergence study. In what follows, we intend to show that the above generated sequence

is bounded under some mild condition on the parameters r1 and r2, and therefore,

there must exist a subsequence of {(xk, yk, zk;λk
1 , λ

k
2)} that is convergent.

Let (x0, y0, z0;λ0
1, λ

0
2) be initially given and (xk, yk, zk;λk

1 , λ
k
2) is generated by Al-

gorithm 3.1. To show the boundedness of this sequence, we first introduce several

lemmas.

Lemma 4.1. For any (x0, y0, z0;λ0
1, λ

0
2), in the sequence {(xk, yk, zk;λk

1 , λ
k
2)}, the La-

grange multiplier λk
1 is bounded for any k ≥ 1, specifically, ‖λk

1‖1 ≤ m/r1. Moreover,

‖yk+1‖22 ≤ ‖Bxk+1‖22 for any k ≥ 0.

Proof. As discussed in (3.5),

yk+1 = argminyL
(
xk+1, y, zk;λk

1 , λ
k
2

)
.

For this sub-problem of y, as discussed above, it has a closed-form solution. In fact,

denote

a = Bxk+1 − λk
1 = [a1 . . . am]T ,

then if |ai| ≤ 1/r1, yk+1
i = 0, and otherwise

yk+1
i = ai −

ai
r1|ai|

, i = 1, . . . ,m.

Note that

λk+1
1 = yk+1 −Bxk+1 + λk

1 = yk+1 − a,

then for i ∈ {1, . . . ,m}, the i-th component of λk+1
1 reads either −ai when |ai| ≤ 1/r1

or −ai/(r1|ai|) when |ai| > 1/r1. For both cases, one has |λk+1
1,i | ≤ 1/r1. Therefore,

‖λk+1
1 ‖1 ≤ m/r1.
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As a = Bxk+1 − λk
1 , one has

|ai| ≤
∣∣(Bxk+1)i

∣∣+
∣∣λk

1,i

∣∣ ≤
∣∣(Bxk+1)i

∣∣+ 1

r1
.

By using the expression of yk+1
i , we get

‖yk+1‖22 =
∑

|ai|>1/r1

(
1− 1

r1|ai|

)2

|ai|2 =
∑

|ai|>1/r1

(
|ai| −

1

r1

)2

. (4.1)

Note that if |ai| > 1/r1, we have

0 < |ai| −
1

r1
≤

∣∣(Bxk+1)i
∣∣,

which shows that

‖yk+1‖22 ≤
∑

|ai|>1/r1

∣∣(Bxk+1)i
∣∣2 ≤ ‖Bxk+1‖22. (4.2)

The proof is complete.

Lemma 4.2. For the generated sequence {(xk, yk, zk;λk
1 , λ

k
2)}, the following identity holds

for any k ≥ 1:

(r1B
TB + r2In)x

k+1 = r1B
T (2yk − yk−1) + r2(2z

k − zk−1).

Proof. If (xk, yk, zk;λk
1 , λ

k
2) is given, one has xk+1 = argminxL(x, yk, zk;λk

1 , λ
k
2).

Then from (3.10), xk+1 satisfies the following equation:

−r1B
T
(
yk −Bxk+1 + λk

1

)
+ r2

(
xk+1 − zk + λk

2

)
= 0.

Similarly, for xk, one has

−r1B
T
(
yk−1 −Bxk + λk−1

1

)
+ r2

(
xk − zk−1 + λk−1

2

)
= 0.

One subtracts the second equation from the first one and gets

− r1B
T
[
yk −Bxk+1 + λk

1 − (yk −Bxk + λk−1
1 ) + yk − yk−1

]

+ r2

[
xk+1 − zk + λk

2 − (xk − zk + λk−1
2 ) + zk−1 − zk

]
= 0.

As

yk −Bxk + λk−1
1 = λk

1 , xk − zk + λk−1
2 = λk

2,

the above equation leads to the conclusion.

With the above lemmas, in what follows, we intend to show that the sequence

{(xk, yk, zk;λk
1 , λ

k
2)}∞k=1 is bounded and must have a convergent subsequence.
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Theorem 4.1. For any initial guess (x0, y0, z0;λ0
1, λ

0
2), if in Algorithm 3.1 the two penalty

parameters r1, r2 > 0 satisfy the following inequality:
√
16τ2 + 4τ + 4τ

2
< 1, (4.3)

where

τ =
4r1

(r1/2 + r2/(4dmax))
, dmax = max{d1, . . . , dn},

then the generated sequence {(xk, yk, zk;λk
1 , λ

k
2)}∞k=1 is bounded and there exists a conver-

gent subsequence.

Proof. From Lemma 4.2,

(r1B
TB + r2In)x

k+1 = r1B
T (2yk − yk−1) + r2(2z

k − zk−1).

By multiplying (xk+1)T from the left of this equation, one gets

r1‖Bxk+1‖22 + r2‖xk+1‖22
= r1(Bxk+1)T (2yk − yk−1) + r2(x

k+1)T (2zk − zk−1)

≤ r1

(
1

2
‖Bxk+1‖22 +

1

2
‖2yk − yk−1‖22

)
+ r2

(
1

2
‖xk+1‖22 +

1

2
‖2zk − zk−1‖22

)
,

and therefore

r1
2
‖Bxk+1‖22 +

r2
2
‖xk+1‖22 ≤

r1
2
‖2yk − yk−1‖22 +

r2
2
‖2zk − zk−1‖22. (4.4)

For any x ∈ R
n,

‖Bx‖22 =
∑

i∼j

(xi − xj)
2 ≤

∑

i∼j

2
(
x2i + x2j

)
≤ 2dmax‖x‖22.

This shows that ‖x‖22 ≥ ‖Bx‖22/(2dmax) for any x ∈ R
n, and therefore

r1
2
‖Bxk+1‖22 +

r2
2
‖xk+1‖22 ≥

(
r1
2

+
r2

4dmax

)
‖Bxk+1‖22, (4.5)

and by Lemma 4.1
(
r1
2

+
r2

4dmax

)
‖yk+1‖22

≤
(
r1
2

+
r2

4dmax

)
‖Bxk+1‖22

≤ r1
2
‖Bxk+1‖22 +

r2
2
‖xk+1‖22

≤ r1
2
‖2yk − yk−1‖22 +

r2
2
‖2zk − zk−1‖22

≤ r1
2

(
8‖yk‖22 + 2‖yk−1‖22

)
+ 5r2, (4.6)
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where we use the fact that zk ∈ π and then ‖zk‖2 ≤ ‖zk‖1 ≤ ∑n
i=1 di|zki | = 1 for any

k ≥ 1 in the last inequality. This leads to the following inequality:

‖yk+1‖22 ≤ 4τ‖yk‖22 + τ‖yk−1‖22 + c, (4.7)

where

τ =
4r1

(r1/2 + r2/(4dmax))
, c =

5r2
(r1/2 + r2/(4dmax))

.

The above inequality can be rewritten for any k ≥ 1 as follows:

‖yk+1‖22 + s‖yk‖22 ≤ t
(
‖yk‖22 + s‖yk−1‖22

)
+ c, (4.8)

where

s =

√
16τ2 + 4τ − 4τ

2
, t =

√
16τ2 + 4τ + 4τ

2
.

Denote ak := ‖yk+1‖22 + s‖yk‖22, then one has ak ≤ tak−1 + c for any k > 2. It is

easy to see that if t ∈ (0, 1)

ak ≤ tk−1a1 + c

k−2∑

i=0

ti ≤ a1 +
c

1− t
(4.9)

for any k > 2.

Therefore, if the two parameters r1, r2 are chosen such that 0 < t < 1, specifically,

t =

√
16τ2 + 4τ + 4τ

2
< 1, (4.10)

one then gets

‖yk+1‖22 ≤ ‖yk+1‖22 + s‖yk‖22 = ak ≤ a1 +
c

1− t
(4.11)

for any k > 2, which shows that the sequence {yk}∞k=0 is bounded. In fact, this can be

easily achieved by setting r2 > 0 large enough so that τ is a small number.

By using (4.4), we can show that {xk}∞k=0 is bounded. Note from (3.10), one has

λk
2 =

r1
r2
BT

(
yk −Bxk+1 + λk

1

)
− xk+1 + zk. (4.12)

Since each of xk, yk, zk, λk
1 is bounded, λk

2 is also bounded for all k ≥ 1.

In summary, if r1, r2 > 0 are chosen such that (4.10) holds, for any initial guess

(x0, y0, z0;λ0
1, λ

0
2), the generated sequence {(xk, yk, zk;λk

1 , λ
k
2)}∞k=1 by Algorithm 3.1 is

bounded so that there exists a convergent subsequence, which finishes the proof.

The above theorem guarantees that there will not be any blow-up by applying the

proposed algorithm.
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5. Numerical experiments

In this section, we report our numerical experiments by applying the proposed al-

gorithm for typical undirected and unweighted graphs.

As discussed above, the original optimization problem (3.1) is non-convex, and the

result of our algorithm depends on the initial guess (x0, y0, z0;λ0
1, λ

0
2). For each test, we

fix λ0
1 = 0 and λ0

2 = 0, and choose x0 such that each of its entries is from the uniform

distribution in the interval (0, 1). Once x0 is chosen, we set y0 = Bx0 and z0 = x0.
Hence, the initial guess is fully determined by x0.

For a given undirected and unweighted graph, using different initial guess x0 can

help find the optimal solution, moreover, it also helps discover different optimal so-

lutions when the uniqueness of optimal solution fails to exist. Therefore, in our ex-

periments, for each given graph, we apply the proposed algorithm with a group of

randomized initial vectors x0 and terminate each of the iterative process with a fixed

iteration number. For each test, we determine the cut value cut(S, Sc) based on the

obtained variable z. We utilize the variable z instead of x for determining the cut be-

cause the variable z is indeed inside a simplex cell. Specifically, for each test, we set

S = {i ∈ V : zi ≥ 0} or S = {i ∈ V : zi > 0} and calculate the two cut values

cut(S, Sc), the lower of which gives the associated cut for this test. We then compare

all the cut values from these tests, and the lowest cut value leads to the Cheeger cut.

Note that for each test, we terminate the iterative process with a fixed iteration

number because what we want is the sign of the entries of x, instead of the real mini-

mizer of (3.1), which also helps save lots of computational efforts.

We first apply the proposed algorithm for the Cockroach graphs C4k as shown in

Fig. 1. For each Cockroach graph with k ∈ {2, . . . , 10}, we test the algorithm using 40
different initial guess x0, each test runs 2000 iterations, and then get the cut determined

by the obtained z. The smallest cut values cut(S, Sc) and the associated cuts for these

Cockroach graphs are listed in Table 1. In fact, these obtained smallest cut values are

exactly the same as the associated Cheeger cut constants, which can be calculated by

considering all the possible sets S of V .

v1 v2 vk vk+1 vk+2 v2k

v2k+1 v2k+2 v3k v3k+1 v3k+2 v4k

Figure 1: The cockroach graph C4k with 4k nodes.
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From Table 1, interestingly, one can see that the Cockroach graphs C12 and C36

have more than one Cheeger cut. This justifies that the proposed procedure of using

different initial guess x0 helps find more optimal solutions. In Figs. 2 and 3, we present

the plot of Cut(S, Sc) versus tests and also the obtained Cheeger cuts. From the plots,

even with 40 tests, many of them lead to the desired Cheeger cut. Note that in the plots

of Cheeger cuts, the nodes with the same color (red or blue) belong to the same group.

In Fig. 4, we seek the Cheeger cut for the Petersen graph. The plots show the

smallest value cut(S, Sc) = 1/3, which corresponds to the Cheeger cut and again there

exist different Cheeger cuts. We here only present a few typical Cheeger cuts, and the

rotation of those presented ones could introduce more new Cheeger cuts. This fact

also demonstrates that there could exist more than one optimal solution to the original

optimization problem (3.1).

Figure 2: The plot of the cut values cut(S, Sc) for 40 tests with different initial value for x0 and the
obtained different Cheeger cuts for the Cockroach graph C12. In this experiment, we set the parameters
r1 = r2 = 100.
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We then consider the well-known Zachary’s karate club network [25]. This club

consists of 34 members. To represent this social network, one assigns an edge between

two members if they are friends. As a result, there are 34 nodes and 78 edges in the

resulting unweighted and undirected graph. As shown in Fig. 5, we obtain the desired

Table 1: The obtained Cheeger constants and cuts for the cockroach graphs C4k.

Cockroach C4k

The smallest cut(S, Sc)
Cheeger cut (S, Sc)

(Cheeger constant)

k=2 1/4 S = (5, 6, 7, 8)

k=3 1/5

S = (1, 2, 3, 7, 8, 9),

S = (7, 8, 9),

S = (1, 2, 3, 4, 7, 8, 9, 10),

S = (1, 2, 3)

k=4 1/8 S = (1, 2, 3, 4, 5, 9, 10, 11, 12, 13)

k=5 1/11 S = (1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16)

k=6 1/14 S = (1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19)

k=7 1/16 S = (9, 10, 11, 12, 13, 14, 23, 24, 25, 26, 27, 28)

k=8 1/18 S = (10, 11, 12, 13, 14, 15, 16, 26, 27, 28, 29, 30, 31, 32)

k=9 1/20
S = (11, 12, 13, 14, 15, 16, 17, 18, 29, 30, 31, 32, 33, 34, 35, 36),

S = (12, 13, 14, 15, 16, 17, 18, 30, 31, 32, 33, 34, 35, 36)

k=10 1/23 S = (13, 14, 15, 16, 17, 18, 19, 20, 33, 34, 35, 36, 37, 38, 39, 40)

Figure 3: The plot of the cut values cut(S, Sc) for 40 tests with different initial value for x0 and the
obtained different Cheeger cuts for the Cockroach graph C36. In this experiment, we set the parameters
r1 = r2 = 100.
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Figure 4: The plot of the cut values cut(S, Sc) for 40 tests with different initial value for x0 and the obtained
different Cheeger cuts for the Petersen graph. In this experiment, we set the parameters r1 = r2 = 100.

Figure 5: The plot of the cut values cut(S, Sc) for 40 tests with different initial value for x0 and the obtained
Cheeger cut. In this experiment, we set the parameters r1 = 40, r2 = 400.

cut

S = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 20, 22},

and the cut value cut(S, Sc) = 0.1282.

As a comparison, on https://en.wikipedia.org/wiki/Zachary%27s_karate

_club, the split result of Zachary’s club is listed as follows:

T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 17, 18, 20, 22},

and the cut value cut(T, T c) = 0.1467, which is larger than our obtained cut value. In
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fact, a direct calculation gives

|∂S| = 10, Vol(S) = 78, Vol(Sc) = 78,

|∂T | = 11, Vol(T ) = 81, Vol(T c) = 75.

This shows that our obtained cut gives a smaller cut value than the one provided on

the wiki.

The above experimental results demonstrate that the proposed algorithm is able to

find Cheeger cuts of those typical unweighted and undirected graphs and real graphs.

In our future work, we plan to apply the proposed algorithm for dealing with practi-

cal problems, especially in studying advanced engineering alloys, such as steels, high-

entropy alloys, and nickel-superalloys [2,9].

To see the effectiveness and efficiency of the proposed algorithm, we conduct a num-

ber of tests for those Cockroach graphs C4k, k = 2, . . . , 10. For each graph, we choose

50 different randomized initial guesses of x0, run the proposed algorithm 200 iterations

for each guess, and then calculate the corresponding value cut(S, Sc) based on the ob-

tained variable z. In Table 2, for each graph, we list the number of those tests that

successfully obtain the Cheeger cut and the averaged time spent on each test. From

this table, one can see that the proposed algorithm could find Cheeger cuts with many

different initial guesses of x0, which demonstrates the effectiveness of the algorithm.

Moreover, Table 2 shows that the computational cost is very low for each of the

listed graphs. This is because the proposed algorithm consists of solving three sub-

problems. Specifically, for the sub-problem of the variable x, one can solve (3.10)

efficiently using PCG, especially for the coefficient matrix r1B
TB + r2In with B being

sparse; while for the sub-problems of the variables y and z, the cost is just O(n), with

n being the number of vertices. These facts explain why the proposed algorithm is

efficient. In Table 2, the CPU time was recorded when the code was running under

Matlab R2021b on a desktop with Intel(R) Core(TM) i5-10505 CPU @ 3.20GHz.

Table 2: The number of tests that successfully obtained Cheeger cuts among 50 tests with randomized

initial guesses of x0 and the averaged time for each test for the cockroach graphs C4k.

Cockroach C4k

Number of tests for
Time spent for each test (seconds)

obtaining Cheeger cut

k=2 29 3.35e-02

k=3 47 3.61e-02

k=4 34 3.80e-02

k=5 38 3.94e-02

k=6 39 3.50e-02

k=7 43 4.22e-02

k=8 44 4.19e-02

k=9 42 4.07e-02

k=10 41 4.25e-02
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6. Conclusion

In the paper, we propose a novel ALM/ADMM based algorithm for finding Cheeger

cuts for any given unweighted and undirected graph G = (V,E) by solving the cor-

responding eigenvalue problem of the 1-Laplacian ∆1(G). As the related optimization

problem involves a non-differentiable function over a non-convex set that consists of

more than 3[(n+1)/2] − 1 simplex cells of different dimensions, there is no guarantee

that the proposed algorithm must converge to the optimal solution that leads to the

Cheeger cut. However, we show that the sequence generated by the proposed algo-

rithm is bounded and thus has a convergent subsequence. To help obtain the optimal

solution, we propose using different initial guesses to find different local minimizers.

Among these local minimizers, we choose the one with the smallest cut value to form

the goal cut. Numerical experiments demonstrate that the proposed algorithm is ca-

pable of finding the Cheeger cuts for typical graphs like the Cockroach graphs, the

Petersen graph. Moreover, it is also applicable for real graphs like the Zachary karate

Club graph.
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