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Abstract. In this paper, we propose a novel algorithm for finding Cheeger cuts via
1-Laplacian of graphs. In [6], Chang introduced the theory of 1-Laplacian of graphs
and built the connection between searching for the Cheeger cut of an undirected and
unweighted graph and finding the first nonzero eigenvalue of 1-Laplacian, the latter
of which is equivalent to solving a constrained non-convex optimization problem.
We develop an alternating direction method of multipliers based algorithm to solve
the optimization problem. We also prove that the generated sequence is bounded
and it thus has a convergent subsequence. To find the goal optimal solution to the
problem, we apply the proposed algorithm using different initial guesses and select
the cut with the smallest cut value as the desired cut. Experimental results are
presented for typical graphs, including Petersen’s graph and Cockroach graphs, and
the well-known Zachary karate club graph.
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1. Introduction

Partitioning a large dataset into a prescribed number of subsets is a fundamen-
tal problem in machine learning and it has many applications in the fields ranging
from computer sciences, statistics, computational biology, image processing, neural
networks, and social sciences, etc. For instance, in the field of image processing, image
segmentation can be regarded as a clustering problem that aims to partition a given
image domain into several parts in order to capture target objects or extract features
depicted in images. The community detection problem is also a clustering problem,
aiming to divide a community into two or more smaller communities, each of which
shares similar preference or homogeneity. For example, for the well-known Zachary’s
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karate club network [25], there are 34 members and 78 edges, and each edge indicates
the associated two members interacted or were friends. One interesting question is to
split this network into two groups such that members in each group have some tight
connection and members in different groups are only loosely connected. In chemical
engineering, cutting 3D crystals into two separate partitions by severing a minimum
number of bonds assumes a large variety of technological applications [23]. Those
crystals can also be described as graphs with atoms for nodes and bonds for edges.

All the above mentioned datasets can be expressed as graphs with nodes and edges.
The partition of those data sets is indeed a graph cut problem, whose objective is to split
a data set into sensible subsets such that points or nodes in each subset share some sim-
ilarity or homogeneity while points in different subsets are dissimilar. Spectral graph
theory [10] is one of the most successful mathematical tools for tackling graph cut
problems. It employs the characteristic polynomials, eigenvalues, and eigenvectors of
matrices that are associated with a given graph, including the graph Laplacian matrix,
adjacency matrix, and so on. Its appealing feature lies in the fact that the properties
of a graph, such as connectivity and symmetry, can be determined by the spectrum of
those matrices.

To find some appropriate cut, specific energy functions or cut functions are often
designed for graphs. In the literature, many different cuts have been proposed, includ-
ing the Cheeger cut [8], the ratio cut [13], the normalized cut [19], etc. The Cheeger
cut is one of the most important cuts and it originates from the well-known Cheeger’s
inequality from Riemannian geometry, where Cheeger proved an inequality that in-
volves the first nontrivial eigenvalue of the Laplace-Beltrami operator on a compact
Riemannian manifold. The Cheeger cut is a discrete analogue that associates with the
graph Laplacian matrix.

Solving those cut problems is usually NP-hard and one has to resort to approximate
solutions. Spectral graph theory provides the most popular approaches for obtaining
such approximate solutions of the original cut problems [10,22]. By using spectral
graph theory, the original cut problem is relaxed to some linear algebra problem that
can be handled easily.

In the literature, lots of research works have focused on the development of relax-
ation of the cut problems [4, 5, 19, 20, 22], especially for the Cheeger cut. Buhler et
al. [5] considered the spectral clustering based on the graph p-Laplacian with p > 1,
and showed that the limit cut, as p — 1+, of thresholding the second eigenvector of
this p-Laplacian converges to the optimal Cheeger cut. In fact, Kawohl et al. [14,15]
proved that the Cheeger constant equals to the limit of the first eigenvalue of the p-
Laplacian as p — 1+. In a recent work by Bresson et al. [4], they proposed minimizing
the original /!-relaxation of the Cheeger cut by employing the augmented Lagrangian
method [11]. Even though these relaxations have produced lots of promising cluster-
ing results for a variety of practical problems, they only provide approximations for
Cheeger cuts. Recently, Chang [6] developed a novel nonlinear spectral graph theory
and systematically studied the 1-Laplacian of graphs, including the associated eigen-
value problem and the structure of its solutions. Most importantly, in this work, for
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the first time, Chang proved that the Cheeger’s constant is equal to the first nonzero
eigenvalue of the 1-Laplacian for a connected graph and the seek of the correspond-
ing eigenvector amounts to solving a constrained optimization. This is totally different
from the linear spectral theory, which merely provides lower and upper bounds for the
Cheeger’s constant.

However, solving the above-mentioned constrained optimization problem is also
very challenging. As detailed later, the optimization problem consists of a nondiffer-
entiable objective function over a non-convex domain. Especially, the domain consists
of more than 3[("+1)/2 — 1 simplex cells for a graph with n vertices, where [z] repre-
sents the nearest integer that is less than or equal to z. In this paper, we propose using
the augmented Lagrangian method (ALM) [11,17] or alternating direction method of
multipliers (ADMM) to solve the above optimization problem.

In the past decade, ALM/ADMM has been successfully applied for nonlinear, non-
differentiable, and high-order variational models in image processing [1,12,21,24,26~
30]. An appealing feature of using ALM/ADMM lies in the fact that solving the original
optimization minimization amounts to the seek of saddle point of some augmented La-
grangian functional, which can be carried out by minimizing several relatively simpler
functionals repeatedly and alternatingly. Usually these resulting functionals could have
closed-form solutions.

The rest of the paper is organized as follows. In Section 2, we review Cheeger cut
and Chang’s work on 1-Laplacian of graphs, especially for the constrained optimization
problem for finding the Cheeger cut. We then develop an ALM/ADMM based algorithm
for solving the optimization problem in Section 3, where we detail how to solve those
sub-problems. Numerical experiments are then presented in Section 5 by applying the
proposed algorithm for typical graphs including Cockroach graphs, Petersen graph, and
Zachary club graph, which is followed by our conclusion in Section 6.

2. Review of Cheeger cut and 1-Laplacian for graphs

In this section, we review a recent work by Chang [6], where the nonlinear spectral
theory for graphs was first developed in the literature. Specifically, Chang introduced
the 1-Laplacian operator for a graph and studied the spectrum. Most importantly, in
this work, for the first time, Chang discovered the marvelous connection between the
Cheeger’s constant and the second eigenvalue of 1-Laplacian A; for any connected
graph.

Let G = (V, E) be an undirected and unweighted graph with vertices V' = {1,... ,n}
and edge set E. Each edge e € FE is a pair of vertices (i,7). For each vertex i, its
degree, denoted as d;, represents the number of edges passing through it. For any two
subsets S and T of V, the set E(S,T) = {(i,j) € E : i € S,j € T} collects all the
edges between S and 7. The edge boundary of S is defined as S = E(S, S¢), where
S¢ = V'\ S, the complement of S. The volume of S is defined as Vol(S) = >, ¢ d;.
With these notations, one could introduce the well-known Cheeger constant for the
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graph as follows: 28]
S
MG = min  NoI(5), Vol (5°)3
where |0S| is the cardinality of 0S. A partition (.5, 5¢) of V is called a Cheeger cut of
the graph G if the Cheeger constant is attained for the set S.

As discussed in the introduction, finding the Cheeger cut of a graph is an NP-hard
problem. In the literature, many approaches have been proposed to approximate the
solution [3-5,19,22]. One of the most popular methods is due to the spectral graphy
theory [10]. Based on the theory, the standard graph Laplacian is defined for the graph
G = (V,E) as L = D—A, where D = diag(dy, ..., dy) is a diagonal matrix and A = [a;;]
is the adjacency matrix with a;; = 1if (4,j) € F and a;; = 0 if (4, j) ¢ E. The matrix
L has eigenvalues 0 = A\; < Ay < --- < )\, and its second eigenvalue A\, can be used to
give bounds for the Cheeger’s constant, that is, the Cheeger inequality,

% < h(G) < /2. (2.2)

Due to this relation, to approximate the Cheeger cut, one could find the associated
eigenvector of Ao and use the sign of its elements or apply some threshold to them to
obtain a cut. Later on, in [5], to get more tight approximation to the Cheeger cut, the
graph p-Laplacian with p € (1, 2) was introduced as follows:

(Apz); = Z |z — ;P tsign(z; — =), (2.3)

i

where j ~ i denotes the edge (i, j) € F and sign(¢) is the standard sign function, which
reads

(2.1)

1, if ¢t >0,
sign(t) =<0, if t=0,
-1, if ¢t<o0.

In [5], the authors proved that, by thresholding the second eigenvector of this p-
Laplacian, the resulting cut converges to the Cheeger cut as p — 1+.

All these methods give only approximations to the Cheeger cut problem. Recently,
Chang [6] developed a novel nonlinear spectral graph theory to study properties of
graphs via 1-Laplacian operator.

In what follows, we recall the key details of Chang’s theory on the spectrum of
1-Laplacian on graphs.

For an undirected and unweighted graph G = (V, F) with avertexset V= {1,...,n}
and an edge set F, each edge e is a pair of vertices and one could assign an orientation
as follows: if z is the head of ¢, denote x = ¢;,; if y is the tail of e, denote y = e;. With
this notation, an m x n incidence matrix B = [b,;] can be introduced

1, if i=ey,
, if i =ey, 2.4)
0, if ide,

where m is the number of edges in F.



Cheeger Cuts and 1-Laplacian 203

In the spectral graph theory [10], the following Dirichlet function was introduced
to study the properties of a graph:

J(z) = % SO (i — 1), 2.5)

i=1 jevi
while Chang [6] considered the following energy function:
I(@) =) |z — ;. (2.6)
jirvi
Note that the subdifferential of the convex function ¢ — |¢| is the set valued function
d|t| = Sgn(t), which reads

1, if t>0,
Sgn(t) = ¢ —1, if t<0, (2.7)
[—1,1], if t=0.

Then one can consider the subdifferential of the non-differentiable function /(). For
this, Chang [6] proved the following theorem:

Theorem 2.1 ([6, Theorem 2.1]). For any z € R", u € 0I(x) if and only if there exists
a function z : E — R such that v = B”z and z.(Bz). = |(Bx).|.

Note that in this theorem, (Bz). is the entry associated with the edge e € E. For
instance, if e is the first edge in the set E, (Bz). denotes the first entry of the vector
Bzx. Moreover, z, = z(e) represents a real number in [—1, 1] for the edge e. As shown
in this theorem, for the edge e = (i,j), ze = 0|z; — x;|/0z;. Specifically, z. = 1 if
x; > xj, 22 = —1if ; < x;, and 2z, = c for some ¢ € [-1,1] if z; = z;. Therefore,
ze € Sgn(z; — x;) for e = (i, ).

To introduce the concept of 1-Laplacian on the graph G, the following definition
was given in [6].

Definition 2.1 ([6, Definition 2.3]). For a given graph G = (V, E), the set valued map
A(G) : x — {BTz|z : E — Ris an R™-vector, satisfying z.(Bz). = |(Bx).|} is called
the 1-Laplacian on the graph G.

Then the 1-Laplacian operator on graph can be expressed as
A(G)z = BTSgn(Bz), (2.8)

where Sgn(y) = (Sgn(y1),--.,580(ym)) for y = (y1,...,ym) € R™. One can see that
this definition of 1-Laplacian is independent of the choice of orientation of edges.
With the above definition and the set

X:{x:(wl,...,xn)ER”:Zdilmilzl}, (2.9)
i=1

one can define the eigenvalue problem associated with the 1-Laplacian A;(G) as fol-
lows:
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Definition 2.2 ([6, Definition 2.4]). (u,xz) € R x X is called an eigenpair of the 1-
Laplacian A(G) on G = (V, E), if

uDSgn(z) N A1(G)x # 0, (2.10)
where D = diag(dy,...,dy).

In this eigenpair (u,x), p is called an eigenvalue of A;(G) and « is the associated
eigenvector.
For any vector z = (z1,...,x,) € R", the vertex set V can be split in three groups:

Dlz)={icV:z; =0}, D¥ax)={icV:4z; >0}

and one can define §°(z) = >°,cpo di, 65 (2) = Y ,cp= di, and hence 6°(z) + 61 (z) +
0 (z) = d, where d = >, d;. With these notations, a special subset = of X is
introduced

m={z=(21,...,3,) € X : 6" (2) =6 (2)| < 8°(x)}. (2.11)

Chang [6] proved any eigenvector z of 1-Laplacian A;(G) with eigenvalue p # 0 must
lie in the set 7. Let K denote the set of all critical points of I(x) over X. Chang
showed that K is the same as the set of all eigenvectors of A;(G). By studying the
critical points of /(z), Chang also proved that the spectrum of A;(G) is discrete and any
eigenvalue lies in the interval [0, 1], and therefore those eigenvalues can be arranged
as0=p <pp <--- <1

Most importantly, for the first time, Chang discovered a direct connection between
the Cheeger cut and the second eigenvalue of A;(G) that can be summarized in the
following two theorems:

Theorem 2.2 ([6, Theorem 5.12]). If G = (V, E) is connected, then po = m, where
m =min{l(x):x € 7}.

Theorem 2.3 ([6, Theorem 5.15]). If G = (V, E) is connected, then ps = h(G).

Therefore, to get the Cheeger cut, we need to find the second eigenvalue of the
1-Laplacian A;(G), which can be obtained by searching for the minimizer of I(x) over
the set # C X. This minimizer or the second eigenvector x determines the Cheeger cut
(S, S¢) by setting S = DT (x) or S = D™ (z).

In a nutshell, finding the Cheeger cut of a given graph G = (V, E') amounts to solv-
ing an optimization problem. As the set X is composed of cells of different dimensions,
one could search for the minimizer over each of these cells. However, there are as many
as 3l(mt1)/2] _1 cells in the set 7, and therefore this way of searching for the minimizer
is NP-hard.

Chang et al. [7] developed a numerical algorithm called the cell descend (CD) to
find the minimizer of I(x) over the set 7. The idea is as follows: as the objective
function I(z) is convex over each sub-cell of 7, one could easily get the minimizer
over one cell and then search for another cell in order to further minimize the function
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I(x) until no decreasing direction can be obtained. Numerical experiments for typical
graphs of small size, as their Cheeger cuts can be obtained theoretically were reported
in [7]. Recently, another interesting work on finding balanced graph cut was proposed
by Shao and Yang [18].

In this work, we develop an ALM/ADMM based algorithm to solve the optimization
problem in order to find the Cheeger cut for a given graph.

3. ADMM for finding Cheeger cuts

In this section, we discuss the details of our ADMM based algorithm to solve the
Cheeger cut problem for a given graph by using the theory developed by Chang [6].

In what follows, we use ||z||, to represent the p-norm of a vector x € R". As
discussed in [6] and reviewed above, to find the Cheeger cut for a given graph G =
(V,E) with V = {1,...,n}, one needs to solve the following optimization problem:

min I(x)
st. zen={zeX:|0%(x)-0 ()] <)},

I@) =Y |a; — ) = 3 [(Ba)e.

g~ ecE

(3.1)

where

The difficulties of tackling this problem lie in two aspects: first, the object function
I(x) is non-differentiable; second, besides being non-convex, the set 7 also imposes
a strict constraint on the sign of the elements of the vector x, which raises another
challenging issue for the seek of minimizer.

To deal with this tough optimization problem, we develop an ALM/ADMM based
algorithm. ALM/ADMM has proven to be very successful in designing fast algorithms
for variational imaging models with higher-order terms or/and non-differential terms
during the past decade [21,24,26-31].

Note that I(z) can be rewritten as I(x) = ||Bz|;. We recast the optimization
problem (3.1) as an equivalent one

min |y|[y + 6x(2)

3.2
st. y=DBx, x=z, (3.2)

where the indicator function ¢, is defined as

if
5e(z) = {O, it zemn,

oo, if zé¢m.
Then we consider the following augmented Lagrangian functional:
Llz,y, 200, 0) =yl + S lly = Be + Mlla + Flle =2+ Xlla +02(2),  (3.3)

where \; € R™, A\ € R" are Lagrange multipliers and r1, 7o > 0 are penalty parameters.
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Based on the optimization theory, to find the minimizer of /(z) over the set , one
needs to obtain a saddle point of the augmented Lagrangian functional (3.3). For this,
one can propose the ADMM to find the saddle point. Specifically, we minimize the
corresponding subproblem for each of the variables x,y, and z respectively by fixing
the other variables and then advance the Lagrange multipliers A\; and A, accordingly;
this process will be repeated until some criterion is met. This iterative method for
approximating the saddle point of the functional (3.3) is given in Algorithm 3.1.

Algorithm 3.1 ADMM for the Minimization of (3.1).
1: Initialization: 20,70, 2% A9, Y.

2: fork >1do
3: Compute the minimizer z*, y*, 2* for the associated sub-problems with fixed
Lagrange multipliers \¥~* and \~!
2" = argmin, £(z, y*, 25 A7, Af), (3.4)
Yl = argminyﬁ(ackﬂ, y, 2" )\lf, /\’5), (3.5)
Rl — argminzﬁ(:vkﬂ,ykﬂ, z; )\lf, /\’5) (3.6)
4: Update the Lagrange multipliers
A =AY + oyt — Bt 3.7)
)\]2<?+1 — )\]26 _|_ .Ik+1 _ Zk+1. (3.8)
5: Stop the iteration if some criterion is met.
6: end for

In what follows, we discuss how to solve the three sub-problems (3.4)-(3.6) one by
one.

3.1. The sub-problems for the variables = and y

For the sub-problem (3.4), one needs to find the minimizer of the function
c1() = S|y = Br+ X[ + 2 le — 2 + X5, (3.9)
Its minimizer is given by the following equation:
(T’lBTB + rgfn):r: = rlBT(yk + )\]f) + 79 (zk — )\12“), (3.10)
where I,, represents the n x n identity matrix. As the coefficient matrix r B” B +ry1,, is

symmetric positive definite, the system can be readily solved using the preconditioned
conjugate gradients method (PCG).
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As for the sub-problem (3.5), the associated function to be minimized can be ex-
pressed as follows:

!
e2(y) = llylh + 5 lly — all3, (3.11)
where a = [ay,...,a,]T = Baz**1 — A}, This is a Lasso problem and its minimizer
y=[y1,...,ym]" is given for the i*" component as follows:
1
0, if Ja;| < —,

T1
Y; =
1 1
(1 _ _> a0 lai > -
r1]ail 1

3.2. The sub-problem for the variable =

(3.12)

We next discuss how to solve the third sub-problem (3.6), which can re-formulated

as an equivalent problem
min ||z — b2

(3.13)
s.t. zem,

where b = 2%+ + )\, Geometrically, this problem seeks the projection of the point
b € R™ on the set 7. Note that the set

= {:U eR": Zdz|xl| =1,|6T(z) =0 (2)] < 50(30)},

i=1

the projection is only onto some simplex cells of the set X = {x € R : Y | d;|a;| = 1}.
To solve this challenging problem, we propose two steps: 1) we first relax the problem
to be the projection onto X; 2) we then adjust the obtained projection to meet the
requirement |67 (z) — 6 (z)| < 8°(x).

For the first step, it is easy to prove the following lemma.

Lemma 3.1. Let b,c € R™ and c is a projection of b onto the set X, then bjc; > 0,i =
1,...,n, where b; and c; are the i-th components of b and c, respectively.

This lemma suggests that we only need to consider the problem of projecting a vec-
tor b with b; > 0,7 = 1,...,n onto the simplex cell of X with all nonnegative variables,
which reads as follows:

min [y — bl

& 3.14
S.t. Zdiyi:L ¥, >0, 1=1,...,n. ( )
i=1

For the simplicity of presentation, denote Y = {y = (y1,...,yn) € R" : 37" | diy; = 1,
Y 20,1':1,...,71} andT:{iGV:yZ— >0}
To solve this projection problem (3.14), let us first see its property.
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Lemma 3.2. Let b = (by,...,b,) € R®with b; > 0,i = 1,...,n, y = (Y1,...,Yn) € R”
be its projection onto the set Y. Then for any i,j € T with i # 7,

Yi —bi  y;—bj
— . 3.15
7 7 ( )

Proof If i, € T and i # j, one considers the perturbation y. = (¥1,...,¥y») of the
projection y = (y1,...,yn) as follows: y, = y;, for k # 4,5, yi = y; — dje,y; = yj + dse
for e € (—y;/d;,yi/d;). One can see that y. € Y for € € (—y;/d;,yi/d;). Asy is the
projection of b onto Y, the function h(e¢) = ||y — b||3 attains its minimum value at 0, and
hence /'(0) = 2(y; — b;)(—d;) + 2(y; — b;)d; = 0, which leads to the conclusion. O

This lemma implies an explicit form of this projection of b onto Y, as stated in the
following theorem.

Theorem 3.1. Let b = (by,...,b,) € R® withb; > 0,i=1,....,n, y = (y1,...,Yn) € R”
be its projection onto the set Y. Then for any i € T,

1= ierbjd;

(3.16)
Yjerd;

yi =bi+d;

Proof. Based on Lemma 3.2, there exists a constant ¢ such that (y; — b;)/d; = ¢
for any i € T, and then y; = b; + cd; for i € T. As > "  d;y; = 1, one gets ¢ =
(1=32;erbjdj)/ > jer d; and thus completes the proof. O

The above theorem provides an explicit form of the projection onto the set Y once
the index set T' is known. However, how to determine this set? For this, we propose
the idea of finding a simplex cell, a subset of the set Y such that all the components of
the projection are positive. In fact, this goal simplex cell can be found using a recursive
method. To this end, let us introduce the following lemmas.

Lemma 3.3. Let b = (by,...,b,) € R with b; > 0,7 = 1,...,n. Then its projection
y = (y1,...,yn) onto the hyperplane H = {x € R" : }_"" | d;x; = 1} can be expressed as
yi =b; +ediyi =1,...,n, where c= (1= Y1 bid;) />0, d2.

This lemma can be easily justified using the method of Lagrange multiplier.

Note that in this lemma, the point is projected onto the whole hyperplane, not the
simplex cell Y. In this lemma, if y; > 0 for i = 1,...,n, then this projection is inside
the cell Y, which means the projection problem (3.14) is solved. If some component
is negative, one needs to further project the above projection point onto some lower-
dimensional simplex cell of Y. To elucidate this argument, we introduce the following
lemma.

Lemma 3.4. Let b = (by,...,b,) € R"withb; > 0,i =1,...,n, y* = (y],...,y:) € R"
be its projection onto the hyperplane H = {x € R" : 3" | d;z; = 1}. Assume that y <0
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and yF > 0 for i = 2,...,n. Then the projection problem (3.14) is equivalent to the
following one:

min  |ly — 3”2

n
3.17
s.t. y1 =0, Zdiyizl, >0, i=2,...,n. ( )
i=2
Proof. For any point x = (z1,...,x,) € Y C H, by connecting it with y*, one gets
the line which can be represented as y; = vy + t(z; — y/),i = 1,...,n with ¢ being

a parameter. This line intersects the simplex cell Y at

7= 0,45+t (w2 —y3),- - yn + (w0 — y3))
with t* = y{/(y] — x1). In fact,

yr ot (e —yl) = A il >0 =2, ,n.

R = )

As yi <0, t* falls in (0, 1), that is, this intersection ¥ lies between = and y*, and by the
Pythagorean theorem,

lz =013 = llz = y* I3 + ly* = blI3 > 17— 715 + ly* — blI3 = |7 - bll3-

Therefore, to find the projection of b onto Y, one only needs to find the projection
onto its subset simplex cell {y = (y1,...,yn) € R" 1 y1 = 0,3 7 o diy; = 1,y; > 0,0 =
yeeoy M) O

Based on the same argument, one could also obtain the same conclusion if yj is re-
placed by any other component while the remaining components are all non-negative.
This lemma guarantees that the seek of the projection onto Y amounts to finding the
projection onto a subset of Y.

In this lemma, only one component of y* is assumed to be negative. In fact, based
on similar arguments, we can prove the following theorem.

Theorem 3.2. Letb = (by,...,b,) € R"withb; > 0,i=1,...,nandy* = (y},...,y}) €
R™ be its projection onto the hyperplane H = {x € R" : > | d;xz; = 1}. Let Aand B
be two disjoint subsets of V.= {1,...,n} and AU B = V. Assume that y; < 0 for any
i € Aand y; > 0 for any j € B. Then the projection problem (3.14) is equivalent to the
following one:

min |y — y"|2
st. y;=0, forany i€A and Y dy;=1, y;>0, jeB 318
JjeB

Proof. Just as the proof in Lemma 3.4, one needs to show that the line connecting
any point x € Y and y* must pass through the lower-dimensional simplex cell {y €
R"™:y; =0 for i € A,yj >0 for j € B’Zjeijyj = 1}
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Suppose that A = {iy,...,ix} and B = {j1,...,Jn—k}. Let us first consider any

point x = (z1,...,x,) € Y with z; > 0,7 = 1,...,n. Without loss of generality, assume
that . . .

Yo o Yia o o Vi

Ty Liq Ly,

As the line connecting = and y* can be expressed as

with ¢ being a parameter, it intersects the hyper-plane {(y1,...,yn) : yi; =0, z#h d;y;
=1}atz=(z1,...,2,), where

zip =0, 2z, =y; +t"(zi, — i), p=2,...,k,
zj, = Y5, T (@5, = y5,); g=1,...,n—k,

and t* = yl*l/(y;*1 — x;,). Then

%Z&<h_ﬁ>, D=2k,

yfl — iy \Tiy Ty
Titi, (Y Y
Z]q:*7<———>, q:1,,n—kj

yil — Ty Ty Ljq
By the above assumption, one has z;, > 0,p = 2,...,k. Note that y;fq > 0 for ¢ =
1,...,n — k and y;, < 0, one also has z;, > 0,¢ = 1,...,n — k. Therefore, this
intersection point z lies in the lower-dimensional simplex cell S;; = {(y1,...,yn) :
Yio = 0,22, djy; = Ly; > 0} C Y, which shows that |lz — y*[2 > [z — y*[|2.
Similarly, for any » € Y with z; > 0,i = 1,...,n, if iy = argmin . 4(y,/z,), then the

line connecting y* and x intersects at a point in the simplex cell 5;,.

Based on the above argument, to get the projection of y* onto Y, one only needs
to find its projections onto its sub-cells S;,,p = 1,...,k and compare them to get the
desired one. In what follows, we intend to show that the projection onto these sub-cells
is equivalent to the projection onto their intersection cell

S = {y: (Y1, yn) tyi =0, for i€ Ajy; >0, for je B,Zdjyj = 1}.
jEB
To justify this claim, let us consider the projection of y* onto the sub-cell S;,. Assume
that y = (y1,...,yn) € S;, is the projection point, and then y;, = 0 and y; > 0 for all j
except i;. We want to show that y;, = 0 forp = 2,..., k. If y;, > 0, for any j, € B, we

consider a perturbation point y* = (y5, ..., ¥;,), where i, =y, —¢, U5 =y, +di, /dj €,
and y = y; for all i # iy, j,. It is easy to see that y° € S;, for each € € [0,y;,).
Then the function f(e) = ||7° — y*||3 takes its minimum value at ¢ = 0, therefore

f10) = =2(yi, — yi,) + 2(yj, — ¥;,)di, /dj, > 0, and then y;, —y; /d;, > vi, — 5, /di,
for any j, € B.
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Set A = (yi, — ¥;,)/diy, then A > 0 and y;, — y; > Ad;, for all j, € B. Then

J
1= diyi + Y _dyy;

icA jeB
> Zdz’yi + Z dj(yj + Adj)
i€A jeB
> digyi, + 1Y diyf + ) d5. (3.19)
ieA jeB

Therefore, as y; < 0 for all i € A, one gets

0> —digyig > —Zdzyl* —|—)\Zdj2 >0,
icA jeB

which leads to a contradiction. This justifies that y;, < 0.
Similarly, one can show that y;, = 0 for p = 3,..., k. This means that the projection
of y* onto the simplex cell S;, is in fact inside an even lower-dimensional cell

S:{y:(yl,...,yn):yi:(), for ie A,y; >0, forjEB,Zdjyjzl},
JjEB

which completes the proof. O

This theorem converts the projection problem (3.14) to be a similar one (3.18) but
onto a lower-dimensional simplex cell if some component of y* are negative. In fact,
the above new problem (3.18) might not guarantee that all the components of the
projection are non-negative. If this occurs, one may repeatedly use the above theorem
until all the components are non-negative. Using this procedure, we can find the exact
solution for the problem (3.14), which leads to the solution of the original projection
problem that projects any point onto the set X. We summarize it as the following
theorem.

Theorem 3.3. For any point b = (by,...,b,) € R", suppose y = (y1,...,yn) € R" is the
projection of the point b = (|b1|,. .., |by|) onto the set

n
Y = {y: (Y1s- -+ Yn) GRn:Zdiyizl,yi ZO,izl,...,n},
i=1

then the projection of b onto
n
i=1
is the point y = (sign(b1)yi, . . .,sign(by,)yy, ), where ‘sign’is the sign function.

This theorem is a direct implication of Lemma 3.1.
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Having solved the problem of projecting any point onto the set X, we then need
to find the projection onto 7 = {z € X : |67 (2) — 6 ()| < 6°(z)}, which is a proper
subset of X. If the projection is already inside 7, then we find the goal projection, in
other words, the problem (3.13) and thus the sub-problem (3.6) is completely solved.
However, this might not always be the case and we need to re-project the original point
onto some appropriate simplex cell. To determine this cell, we consider an equivalent
form of the sign constraint as follows.

Lemma 3.5 ([7, Lemma 2]). z € 7 if and only if 6 (z) < d/2 and 6~ (z) < d/2, where
d=>37" di

Suppose that 3 is the projection of a point b onto X. Based on this lemma, if both
57 (y) and 6~ (y) are not larger than d/2, then ¥ is the goal projection onto 7. Otherwise,
we need to adjust the projection to meet the sign constraint to do the projection. To be
specific, denote

tp={ieV:y; >0} —={ieV:y <0}

If 6+ (y) > d/2, we need to find a subset of .} C v such that the total degree Zie@ d; <
d/2. Then the index set w = ! U._ forms a sub-simplex cell defined as follows:

Pw,m = {y = Zyzmzez : Zdiyi = 17% > O,mi = &gn(ﬂz),w S w} s (320)
IS €W
where e; represents the i-th standard basis vector in R".
To find the goal projection onto 7w, we encounter two problems:

1. How to determine all of those subsets of ¢} of .y to form admissible sub-simplex
cells?

2. Once all those sub-simplex cells are obtained, how to get the desired one?

The first problem is in fact the subset sum problem [16]. If 67 () > d/2, we denote
gap = §1(y) — d/2, and find all the subsets of ¢, each of which has the total degree
that lies in [gap, 61 (7)]. Suppose that (2 C vy with Zie& d; > gap, then (L =1} \ /2
and w = L}’_ U t_ gives an index set for an admissible sub-simplex cell I', ,.

As for the second problem, since y is the projection of b onto X, the projection of b
onto any simplex cell of X gives an equal or larger value than || — b||%. As a result, one
only needs to compare those value increments over all those admissible simplex-cells
and choose the one with the smallest increment. In fact, to determine the increment

for each sub-simplex cell, we have the following theorem.

Theorem 3.4. Assume that v = (z1,...,x,) € R" is the projection of the point b =
(b1,...,by) € R®withb; > 0,i =1,...,nonto the set X and v = {i1,...,ix} ={i eV :
x; > 0}. If w C v and x,, is the projection of b onto the simplex cell

Ly = {Z/:Zyiez‘izdwi =1,y > 0,Vi ew},

S i€L
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then

(3.21)

(ZZEL\UJ dxl)2
2w = BlI3 =l —bll3 = D 27+
ZEZL\:w ZZEL i ZiEL\w d22

Proof. By Theorem 3.1, one has for any i € ¢, ; = b; + td; with t = (1 —
ZZEL d b )/ ZZGL 7 ~ ~

Similarly, for any i € w, @y,; = b; + td; with ¢ = (1 — >, dibi)/ >, d7, and for
any i € ¢\ w, z,; = 0.

As
S dilbi+td) =1, > di(b; +td;)
Ze[/ zEw
one gets
S diwi+ Y di(t—1) =0
i€\w 1Ew
and then 5 p
? 1€L\w iLi
t—t= LQ =:s.
ZZEw dz
Therefore,
|z — blI3 — [l — bll3
=) i+ > P £d
i€\w 1Ew 1€L
=Y Y (P -)d; - ) Pd]
i€\w €W i€\w
= (@i~ td)? + S (P 2us)d - Y £
i€\w i€w i€\w
= (af = 2dizy) + Y (57 + 2ts)d?
i€\w €W
(ZZEL\UJ dixi)Q
— T; + 2d2 ,
iEZL\:w % ZEZL\:UJ ZZEL ( ZiEL\w d12
which gives the conclusion. O

In a nutshell, for any given point b, one gets its projection x onto X, and checks
whether §*(z) and 6~ () are both equal or less than d/2. If 6" (z) > d/2, one sets 1 =
{ieV:x;>0}and .- = {i € V : z; < 0}, and finds all the subsets of ¢, such that
each of them has a total degree equal to or greater than gap = 0 (z) —d/2. Let (2 C vy
with Y ._ . d; > gap be one of these subsets, then one calculates the corresponding

increment ||z, — b||3 — ||z, — b||3, where b = (|b1], ..., |bn|), w = ¢y \ ¢ ti,0 =14 U, and
z,, and z, are the projection of b onto X. This is because the above theorem holds for
the projection of a point with non-negative entries.

ZEL
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Based on the above arguments, the sub-problem (3.6) of z is solved, that is, one
finds the projection of any point in R" onto the set 7.

As a summary, we have discussed the methods to solve the three sub-problems
(3.4)-(3.6). Therefore, once the initial (2°,°, 2% A9, \J) is given, as shown in (3.4)-
(3.8), a sequence {(z*,y*, z¥; Ak \5)> 1 can be generated. If this sequence converges
to the saddle point of the augmented Lagrangian functional (3.3), then the original
optimization problem (3.1) is solved.

Even though the above ADMM algorithm provides a viable tool to find the Cheeger
cut for any given undirected and unweighted graph, there still remain two issues. The
first issue is whether the algorithm could give the global minimizer of the optimization
problem (3.1). Note that the optimization problem is defined over a non-convex set,
and the proposed algorithm does not ensure the global minimizer, but merely a local
minimizer. The second issue lies in the computational complexity of solving the subset
sum problem. In fact, it can also be regarded as an NP-hard problem.

To deal with the first problem, in this paper, we propose applying the developed
ADMM with different initial guess (2, °, 2°) for a given graph and comparing all those
obtained cuts to determine the Cheeger cut. Specifically, among all the obtained cuts,
the cut with the smallest value of

05|

cut(S, 5¢) = min{Vol(S), Vol(5¢)}

is the desired cut. As shown in the numerical experiments section, this procedure could
help find many optimal solutions to the optimization problem (3.1) or Cheeger cuts for
a given graph.

Before discussing how to solve the second problem, we consider a corollary of The-
orem 3.4.

Corollary 3.1. Assume that x = (z1,...,z,) € R™ is the projection of the point b =
(b1,...,by) € R®withb; > 0,i =1,...,n onto the set X and v = {iy,...,ix} ={i €V :
x; > 0}, Forany j € {1,...,k}, let wj = ¢\ {i;} and x,; be the projection of b onto the
simplex cell T'y,, ,,, then

2 2 D 15
2w, = 0ll3 — [, —blI5 = (3.22)

where D = Y d?.

To elucidate the method of dealing with the second problem, as discussed before,
we assume z is the projection of b onto X and 6+ (z) = {i1,...,i} with §7(z) > d/2.
Note that b could be any vector in R™. To apply the above corollary, one needs to
consider the vector b = (|by], ..., |by|). It is easy to see that the vector (|z1|,..., |zn|)
is the projection of b. Denote v = {iy,...,i,} Ud () and wij =\ {i;},j=1,... .k
We first calculate all the increments g; = Dz%j /(D — d?j), j =1,...,k, and then sort
{9;}, = 1,..., k. For simplicity, let us assume g; < g2 < --- < gg. If p = inf{q €
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N: Y _,d;, > dt(z) — d/2}, then we get the index set w = {ip;1,...,9x} U (z) and
the goal sub-simplex cell is I',, ,, as defined in (3.20). The new projection 2 onto this
simplex cell surely satisfies the sign constraints §* (%) < d/2 and §~ (&) < d/2.

The above procedure does not ensure that the projection of b onto the set = can
be found. However, it does give some projection of b onto 7. Note that the proposed
algorithm is iterative, and one could solve the sub-problem (3.6) approximately. In
fact, by using this procedure, one could dramatically reduce the computational cost for
solving the sub-problem of z.

4. Convergence analysis

In this section, we discuss the property of the sequence {(z*, y*, z; A} \5)} gen-
erated by Algorithm 3.1. Note that the original optimization problem (3.1) is non-
differentiable and non-convex, especially, the domain consisting of more than 3((»+1)/2]
— 1 simplex cells of different dimensions. This raises a challenging problem for the con-
vergence study. In what follows, we intend to show that the above generated sequence
is bounded under some mild condition on the parameters r; and ry, and therefore,
there must exist a subsequence of {(z*,y*, 2¥; A\¥ A5)} that is convergent.

Let (2°,4°, 2% A, \) be initially given and (x*,y*, 2%; \¥, \5) is generated by Al-
gorithm 3.1. To show the boundedness of this sequence, we first introduce several
lemmas.

Lemma 4.1. For any (2°,1°, 2%\, )\9), in the sequence {(z*,y*, 2*; \¥ \5)}, the La-
grange multiplier A} is bounded for any k > 1, specifically, |\¥||; < m/ry. Moreover,
ly* I3 < [[Ba* 3 for any k > 0.

Proof. As discussed in (3.5),
yF ! = argmin, £ (2", y, 27 AT, A5).

For this sub-problem of y, as discussed above, it has a closed-form solution. In fact,
denote
a=Ba* -\ =[a; ... a,)7,

then if |a;| < 1/r1, yF™! = 0, and otherwise

k+1 @i -
yl-Jr =q;———, i=1,...,m.
r1fail
Note that
AL bt gkl g gk kel
then for i € {1,...,m}, the i-th component of A} reads either —a; when |a;| < 1/r

or —a;/(ri|a;|) when |a;| > 1/r;. For both cases, one has ])\’ff{l\ < 1/ry. Therefore,
AT < m/r
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As a = Bax**1 — \k, one has

ol < |(Ba 41 + M| < (B + -
k+1

By using the expression of y;

1’ 1\?
= S (1-o) = X (Wl-g) . @D

la;|>1/r1 la;|>1/r1

, we get

Note that if |a;| > 1/, we have
1
0< ]a,] — 7“_1 < ‘(B$k+1)i|,

which shows that

I3 < ST (B P < B2 (4.2)
lai|>1/r1

The proof is complete. O

Lemma 4.2. For the generated sequence {(z*, y*, 2¥; \k, \)}, the following identity holds
forany k > 1:

(nBTB + rgln)ka = nBT(ka — yk_l) + 7"2(22"“ — zk_l).

Proof. If (z%,y*, 2% A}, %) is given, one has z*+! = argmin, L(x,y*, 25; A}, \5).
Then from (3.10), ="+ satisfies the following equation:
—nBT(yk — Bzt 4 )\]f) + 7y (ka — )\g) =0.

Similarly, for 2*, one has

—rlBT(yk_l — BzF + )\’ffl) + 7 (CEk — )\gfl) = 0.
One subtracts the second equation from the first one and gets

— BT [yf = BaF e - (0 - Bah M) -y -y

+ 79 [mk‘H — k4 )\/!2C — (Zﬂk — 2k )\gfl) 42kl = zk} =0.

As
Yt — Bab - ML= 0 aR R N = 0

the above equation leads to the conclusion. O

With the above lemmas, in what follows, we intend to show that the sequence
{(ak, y*, 2%, Ak, A5)}22 | is bounded and must have a convergent subsequence.
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Theorem 4.1. For any initial guess (z°,4°, 2°; A}, \9), if in Algorithm 3.1 the two penalty
parameters r1,ro > 0 satisfy the following inequality:

V1672 4+ 47 + 47 <1

5 : (4.3)

where
47“1

~ (/2 + 2/ (4dinax))

then the generated sequence {(z*,y*, 2%; \¥, \§)12° | is bounded and there exists a conver-
gent subsequence.

dmax = max{dy,...,d,},

Proof. From Lemma 4.2,
(rBTB + ro@,) "t = 1 BT (2% — yF 1) + rp(22F — 2871,
By multiplying (z**1)” from the left of this equation, one gets
r1| Ba 3 4 ol 3

— Tl(Bl‘k+1)T(2yk _ ykfl) + T’Q(CCkJrl)T(QZk _ Zkfl)

1 1 _ 1 1 _
< (BB + Sl20F — ) v (Gll0R B + g2t - A1)

and therefore
1 E+1p2 | T2 k12 11 k k—172 , T2 k k—12
Bz E + Iz s < S l120" — v s + ][220 = 27 (4.4)
2 2 2 2

For any z € R",

1Bal3 =D (wi —2;)° <Y 2(aF +3) < 2elmaxl|3.

i~vJ i~vJ

This shows that ||x||3 > || Bz||3/(2dmax) for any x € R™, and therefore

T T T T
TIBHE + 2t > (G 2 ) 1t 45)
max

and by Lemma 4.1

" 2 k+1)12
(5 + 7 ) 8

"1 2 k+172
<= B
< (5 g ) et

1 T2
< Bt + 2t

T T
< Doyt - yh 3+ 22k - 13

IN

1 _
S (B9 13 + 211y" 1) + v, (4.6)
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where we use the fact that z* € 7 and then ||2F|]2 < [|2¥[]; < Y1, di|z¥| = 1 for any
k > 1 in the last inequality. This leads to the following inequality:

Iy 15 < 4rlly®(I5 + Iy I3 + e, 4.7)
where
. 47"1 . 57’2
(r1/2 +ro/(4dmax))’ (r1/2 +ro/(4dmax))

The above inequality can be rewritten for any & > 1 as follows:

™11 + sl 13 < ¢ (" I3+ slly™13) + e, (4.8)
where
V1672 441 — 47 t_\/167'2—{—47'+47'
B 2 o 2 ‘
Denote a; := ||y*T!||3 + s||y*||3, then one has a, < tay_; + c for any k > 2. It is
easy to see thatif t € (0,1)
k—2 .
k-1 i
ap <t al—i—czgt §a1+1—_t (49)
1=

for any £ > 2.
Therefore, if the two parameters r1, o are chosen such that 0 < ¢ < 1, specifically,

V1672 + 47 + 47 _
- 2

t

1, (4.10)

one then gets

c
I3 < U + syt IB = an < a1+ —— (41D)
for any k > 2, which shows that the sequence {y*}?°, is bounded. In fact, this can be
easily achieved by setting r» > 0 large enough so that 7 is a small number.
By using (4.4), we can show that {:ck 122, is bounded. Note from (3.10), one has

A = :—1BT(yk — Ba gAY - gy ok (4.12)
2

Since each of 2*, y*, 2*  \¥ is bounded, )5 is also bounded for all £ > 1.

In summary, if 1,79 > 0 are chosen such that (4.10) holds, for any initial guess
(20,1%, 2% A0, \9), the generated sequence {(z*,y*, 2%; \F, A\5)}2° | by Algorithm 3.1 is
bounded so that there exists a convergent subsequence, which finishes the proof. [

The above theorem guarantees that there will not be any blow-up by applying the
proposed algorithm.
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5. Numerical experiments

In this section, we report our numerical experiments by applying the proposed al-
gorithm for typical undirected and unweighted graphs.

As discussed above, the original optimization problem (3.1) is non-convex, and the
result of our algorithm depends on the initial guess (z°, ", 2; A?, \9). For each test, we
fix Y = 0 and A} = 0, and choose z° such that each of its entries is from the uniform

distribution in the interval (0,1). Once z° is chosen, we set y° = Bz? and 2° = 2°.
Hence, the initial guess is fully determined by .
For a given undirected and unweighted graph, using different initial guess ° can

help find the optimal solution, moreover, it also helps discover different optimal so-
lutions when the uniqueness of optimal solution fails to exist. Therefore, in our ex-
periments, for each given graph, we apply the proposed algorithm with a group of
randomized initial vectors 2° and terminate each of the iterative process with a fixed
iteration number. For each test, we determine the cut value cut(S, S¢) based on the
obtained variable z. We utilize the variable z instead of x for determining the cut be-
cause the variable z is indeed inside a simplex cell. Specifically, for each test, we set
S={ieV:z >0orS={i €V :z >0} and calculate the two cut values
cut (S, S¢), the lower of which gives the associated cut for this test. We then compare
all the cut values from these tests, and the lowest cut value leads to the Cheeger cut.

Note that for each test, we terminate the iterative process with a fixed iteration
number because what we want is the sign of the entries of z, instead of the real mini-
mizer of (3.1), which also helps save lots of computational efforts.

We first apply the proposed algorithm for the Cockroach graphs Cy; as shown in
Fig. 1. For each Cockroach graph with k € {2,...,10}, we test the algorithm using 40
different initial guess z, each test runs 2000 iterations, and then get the cut determined
by the obtained z. The smallest cut values cut(S, S¢) and the associated cuts for these
Cockroach graphs are listed in Table 1. In fact, these obtained smallest cut values are
exactly the same as the associated Cheeger cut constants, which can be calculated by
considering all the possible sets S of V.

VT —— V2 ----. Uk UVk+1 Uk+2 ----- U2k

V2k+1 Vok+42----- U3k V3k+1 V3k4+2- - - - U4k

Figure 1: The cockroach graph Cy; with 4k nodes.
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From Table 1, interestingly, one can see that the Cockroach graphs Cj2 and Csg
have more than one Cheeger cut. This justifies that the proposed procedure of using
different initial guess x° helps find more optimal solutions. In Figs. 2 and 3, we present
the plot of Cut(S, S¢) versus tests and also the obtained Cheeger cuts. From the plots,
even with 40 tests, many of them lead to the desired Cheeger cut. Note that in the plots
of Cheeger cuts, the nodes with the same color (red or blue) belong to the same group.

In Fig. 4, we seek the Cheeger cut for the Petersen graph. The plots show the
smallest value cut (.S, S¢) = 1/3, which corresponds to the Cheeger cut and again there
exist different Cheeger cuts. We here only present a few typical Cheeger cuts, and the
rotation of those presented ones could introduce more new Cheeger cuts. This fact
also demonstrates that there could exist more than one optimal solution to the original
optimization problem (3.1).

0.24
0.23f
0 0.22f
@
50.21f
o
0.2r
0.19 . . .
10 20 30 40
Tests
7 8 9 10 11 12 7 8 9 10 11 12
[ L L [ L L
1 2 3 4 5 6 1 2 3 4 5 6
@ L 2 L L L L ] [} L J L L L L ]
7 8 9 10 11 12 7 8 9 10 11 12
® L L L L 2 L ] o L L L L 2 L ]
1 2 3 4 5 6 1 2 3 4 5 6
@ L 2 L L L L ] @ L 2 L L L L ]

Figure 2: The plot of the cut values cut(S,S¢) for 40 tests with different initial value for z° and the

obtained different Cheeger cuts for the Cockroach graph Ci2. In this experiment, we set the parameters
T =T2 = 100.
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We then consider the well-known Zachary’s karate club network [25]. This club
consists of 34 members. To represent this social network, one assigns an edge between
two members if they are friends. As a result, there are 34 nodes and 78 edges in the
resulting unweighted and undirected graph. As shown in Fig. 5, we obtain the desired

Table 1: The obtained Cheeger constants and cuts for the cockroach graphs Clyy.

t cut ¢
Cockroach Cyy, The smallest cut(S, 5°) Cheeger cut (S, S°)
(Cheeger constant)
k=2 1/4 S =(5,6,7,8)
S=(1,2,3,7,8,9),
k=3 1/5 §=(7.8,9),
S =(1,2,3,4,7,8,9,10),
S =(1,2,3)
k=4 1/8 S=(1,2,3,4,5,9,10,11,12,13)
k=5 1/11 S =(1,2,3,4,5,6,11,12,13, 14, 15, 16)
k=6 1/14 S=(1,2,3,4,5,6,7,13,14,15,16,17,18,19)
k=7 1/16 S =1(9,10,11,12,13,14, 23, 24, 25, 26, 27, 28)
k=8 1/18 S =(10,11,12,13, 14, 15, 16, 26, 27, 28, 29, 30, 31, 32)
k=9 1/20 S =(11,12,13,14,15,16,17, 18,29, 30, 31, 32, 33, 34, 35, 36),
S = (12,13,14,15,16,17, 18, 30, 31, 32, 33, 34, 35, 36)
k=10 1/23 S = (13,14,15,16, 17, 18,19, 20, 33, 34, 35, 36, 37, 38, 39, 40)
0.2 T T r
0.15
N
2
& 0.1
5
o
0.05f
0 . . .
0 10 20 30 40
Tests

10 1112113 14 15 .16 |17 18 1

10 11112 13 14 15116 |17 18
0000 0000

Figure 3: The plot of the cut values cut(S,S¢) for 40 tests with different initial value for z° and the

obtained different Cheeger cuts for the Cockroach graph C3s. In this experiment, we set the parameters
T =12 = 100.
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Figure 4: The plot of the cut values cut(.S, S¢) for 40 tests with different initial value for 2° and the obtained
different Cheeger cuts for the Petersen graph. In this experiment, we set the parameters r; = ro = 100.
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Figure 5: The plot of the cut values cut(.S, S¢) for 40 tests with different initial value for 2° and the obtained
Cheeger cut. In this experiment, we set the parameters 1 = 40, r2 = 400.

cut
S =1{1,2,3,4,5,6,7,8,10,11,12, 13, 14,17, 18, 20, 22},

and the cut value cut(.S, S¢) = 0.1282.

As a comparison, on https://en.wikipedia.org/wiki/Zachary%27s_karate
_club, the split result of Zachary’s club is listed as follows:

T ={1,2,3,4,5,6,7,8,9,11,12,13,14, 17, 18, 20, 22},

and the cut value cut(7',7¢) = 0.1467, which is larger than our obtained cut value. In
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fact, a direct calculation gives

0S| =10, Vol(S) =178, Vol(5°) =78,
0T =11, Vol(T) =81, Vol(T¢) = 7.

This shows that our obtained cut gives a smaller cut value than the one provided on
the wiki.

The above experimental results demonstrate that the proposed algorithm is able to
find Cheeger cuts of those typical unweighted and undirected graphs and real graphs.
In our future work, we plan to apply the proposed algorithm for dealing with practi-
cal problems, especially in studying advanced engineering alloys, such as steels, high-
entropy alloys, and nickel-superalloys [2,9].

To see the effectiveness and efficiency of the proposed algorithm, we conduct a num-
ber of tests for those Cockroach graphs Cyi, k = 2,...,10. For each graph, we choose
50 different randomized initial guesses of xz°, run the proposed algorithm 200 iterations
for each guess, and then calculate the corresponding value cut(S, S¢) based on the ob-
tained variable z. In Table 2, for each graph, we list the number of those tests that
successfully obtain the Cheeger cut and the averaged time spent on each test. From
this table, one can see that the proposed algorithm could find Cheeger cuts with many
different initial guesses of 2°, which demonstrates the effectiveness of the algorithm.

Moreover, Table 2 shows that the computational cost is very low for each of the
listed graphs. This is because the proposed algorithm consists of solving three sub-
problems. Specifically, for the sub-problem of the variable x, one can solve (3.10)
efficiently using PCG, especially for the coefficient matrix 71 BT B + r31,, with B being
sparse; while for the sub-problems of the variables y and z, the cost is just O(n), with
n being the number of vertices. These facts explain why the proposed algorithm is
efficient. In Table 2, the CPU time was recorded when the code was running under
Matlab R2021b on a desktop with Intel(R) Core(TM) i5-10505 CPU @ 3.20GHz.

Table 2: The number of tests that successfully obtained Cheeger cuts among 50 tests with randomized
initial guesses of z° and the averaged time for each test for the cockroach graphs Cys.

Cockroach Cy; Nur.n].)er of tests for Time spent for each test (seconds)
obtaining Cheeger cut
k=2 29 3.35e-02
k=3 47 3.61e-02
k=4 34 3.80e-02
k=5 38 3.94e-02
k=6 39 3.50e-02
k=7 43 4.22e-02
k=8 44 4.19e-02
k=9 42 4.07e-02
k=10 41 4.25e-02
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6. Conclusion

In the paper, we propose a novel ALM/ADMM based algorithm for finding Cheeger
cuts for any given unweighted and undirected graph G = (V, E) by solving the cor-
responding eigenvalue problem of the 1-Laplacian A;(G). As the related optimization
problem involves a non-differentiable function over a non-convex set that consists of
more than 3[+t1)/2 — 1 simplex cells of different dimensions, there is no guarantee
that the proposed algorithm must converge to the optimal solution that leads to the
Cheeger cut. However, we show that the sequence generated by the proposed algo-
rithm is bounded and thus has a convergent subsequence. To help obtain the optimal
solution, we propose using different initial guesses to find different local minimizers.
Among these local minimizers, we choose the one with the smallest cut value to form
the goal cut. Numerical experiments demonstrate that the proposed algorithm is ca-
pable of finding the Cheeger cuts for typical graphs like the Cockroach graphs, the
Petersen graph. Moreover, it is also applicable for real graphs like the Zachary karate
Club graph.
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