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Abstract. In this paper, a quadratic spline collocation (QSC) method combined with
L1 time discretization in the framework of alternating direction implicit (ADI) ap-

proach, namely ADI-QSC-L1 method, is developed to solve the variable-order time-

fractional mobile-immobile diffusion equations in multi-dimensional spaces. Dis-
crete L2 norm-based stability and error estimate are carefully discussed, which

show that the proposed method is unconditionally stable and convergent with first-

order accuracy in time and second-order accuracy in space. Then, based on the
exponential-sum-approximation technique for the fast evaluation of the variable-

order Caputo fractional derivative, an efficient implementation strategy of the ADI-
QSC-L1 method, named ADI-QSC-FL1 is presented, which further improves the

computational efficiency by reduced memory requirement and computational cost.

Finally, numerical examples are provided to support both the theoretical results and
efficiency of the developed method.
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1. Introduction

A large number of research indicates that many natural phenomena and structures

can be better described by fractional differential equations (FDEs), due to the histori-
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cal memory and global correlation of the fractional operators, such as fluid flow in an

unsaturated media [32, 36], viscoelastic anomalous diffusion in complex liquids [30],

chemical reactions in underground water and so on [37]. In recent years, the time-

FDEs, which are often used to describe the subdiffusive solutes transport in hetero-

geneous media [31, 34, 46] or model the memory behavior of shape-memory poly-

mer [17], have attracted great interests of researchers. Wang and Zheng [40] devel-

oped a modified two-scale variable-order time-fractional mobile-immobile equation to

model the solute transport in heterogeneous porous media, and they rigorously proved

the wellposedness and regularity of the model.

It is well-known that numerical modeling is one of the main methods for solving

many types of FDEs, and indeed various numerical methods have been developed,

such as finite difference methods [1, 9, 14, 20, 28, 35, 38, 39, 51], finite element meth-

ods [3,13,15,26,43,48], finite volume methods [7,8,49], spectral methods [2,44]. As

an efficient numerical tool, quadratic spline collocation (QSC) methods have been suc-

cessfully studied for integer-order differential equations [4, 5, 10], and have also been

applied for FDEs, for example, Luo et al. [27] proposed a space-time QSC method in

all-at-once manner to solve the sub-diffusion equations. We combined the QSC method

and L1 formula for solving the sub-diffusion equation with fractional boundary condi-

tions, and rigorous numerical analysis is given in [24]. Besides, we also developed and

analyzed the QSC method for space-FDEs [22, 23, 25]. Moreover, some other types of

collocation methods for FDEs are also considered, see [16, 18, 42]. Recently, the au-

thors applied the QSC method for variable-order time-fractional mobile-immobile dif-

fusion equations with variably diffusive coefficients [21], and showed that the method

is unconditionally stable and convergent with first-order in time and second-order in

space with respect to some discrete and continuous L2 norms. Then, combined with

the reduced basis technique, an efficient QSC-L1-RB method was proposed to further

improve the computational efficiency. This seems the first paper on analysis of QSC

method for variable-order time-fractional model. However, for large-scale and long

time modeling and simulations, the method is still computationally expensive. There-

fore, it deserves to develop much more efficient numerical methods for the interested

two-scale variable-order model.

Alternating direction implicit (ADI) method, serving an operator spitting method,

is able to convert the multi-dimensional large-scale problem into a series of one-di-

mensional small-scale subproblems. Thus, it can reduce the computational cost greatly

and solve the model problem easily in parallel. Various ADI methods have been exten-

sively developed for time-FDEs [6,41,47]. Another efficient approach for time-FDEs is

the sum-of-exponentials (SOE) technique. Jiang et al. [12] proposed a fast evaluation

method for the constant-order Caputo fractional derivative by the SOE approximation.

This method is able to reduce the memory requirement and the computational cost

greatly. However, it can not be directly applied to the variable-order fractional deriva-

tive and related model. Recently, Zhang et al. [45] provided a variant SOE technique,

named exponential-sum-approximation (ESA), to approximate the variable-order Ca-

puto fractional derivative and variable-order time-fractional diffusion equation. In this
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paper, we will put forward an efficient numerical method from both time and space

approximation angles, for the variable-order time-fractional mobile-immobile diffusion

equations, and our contributions are mainly threefold:

• Combining the QSC method in ADI framework and the L1 temporal discretization

formula, we developed an efficient ADI-QSC-L1 method for multi-dimensional

variable-order time-fractional mobile-immobile diffusion equations, where non-

homogeneous boundary equations for the homogeneous Dirichlet boundary con-

ditions are treated technically in the ADI approach.

• Discrete L2 norm-based unconditionally stability and convergence analysis of the

ADI-QSC-L1 method are rigorously discussed, and the result is proved to be first-

order accurate in time and second-order accurate in space. Furthermore, we

also discuss an efficient implementation of the ADI-QSC-L1 method by the ESA

technique to further reduce the computational cost.

• Numerical experiments for two- and three-dimensional variable-order time-frac-

tional models are presented to illustrate the convergence and efficiency of the

proposed ADI methods. Moreover, an adaptive temporal stepsize strategy is con-

sidered for the ADI-QSC-L1 approximation of the variable-order time-fractional

Allen-Cahn equation, and comparisons of the computational efficiency with the

direct method on uniform temporal grids are tested.

The outline of the paper is organized as follows. In Section 2, we first propose the

ADI-QSC-L1 method for the variable-order time-fractional mobile-immobile diffusion

equation in two space dimensions, and then analyze the stability and convergence of

the method in Section 3. Efficient implementation of the ADI-QSC-L1 method based on

the ESA technique is briefly discussed in Section 4. Three numerical experiments are

provided in Section 5 to verify the convergence and efficiency of the proposed methods.

Finally, concluding remarks are given in the last section.

2. Variable-order time-FDE and the ADI-QSC-L1 approximation

In this section, we consider the following variable-order time-FDE:










∂tu(X, t) + λC
0D

1−α(t)
t u(X, t) = D∆u(X, t) + f(X, t) in Ω× I,

u(X, t) = ϕ(X, t) on ∂Ω× I,

u(X, 0) = uo(X) in Ω,

(2.1)

where I := (0, T ], Ω := (xL, xR) × (yL, yR) is a rectangular domain with sizes L1 =
xR − xL, L2 = yR − yL, ∂Ω denotes the boundary of Ω,X = (x, y). The diffusion

coefficient matrix D = diag{d1, d2} with d1 and d2 being positive constants. Besides,

λ is a positive capacity constant, f and uo are prescribed source and initial functions.

Here, we assume α ∈ C1[0, T ], and it satisfies the following conditions:

0 < α∗ := min
t∈[0,T ]

α(t) ≤ max
t∈[0,T ]

α(t) := α∗ < 1, lim
t→0+

(

α(t)− α(0)
)

ln t exists. (2.2)
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The variable-order Caputo fractional derivative is defined by

C
aD

1−α(t)
t g(t) :=

[

1

Γ(α(t))

∫ ξ

a

∂sg(s)(ξ − s)α(t)−1ds

]

∣

∣

∣

∣

∣

ξ=t

.

Eq. (2.1) can be used to model the process of solute transport in soil [31, 46],

and the first-order temporal derivative term in (2.1) represents the linear drift of time

for the solute particles in the mobile phase, while the fractional-order derivative term

describes the solute transport in the immobile phase, which is limited by soil struc-

ture and adsorption. The structure and porosity of soil usually depend on the previ-

ous period of rainfall or irrigation, and this historical memory can be reflected by the

fractional-order operators in the mathematical model. Moreover, it is well known that,

the constant-order time-FDEs suffer initial singularity. However, as reported in [50]

that the variable-order time-FDE (2.1) is well-posed if conditions (2.2) and suitable

smoothness assumptions on the given data are satisfied, and the initial singularity can

be resolved. Throughout the paper, we assume f and uo are sufficiently smooth.

2.1. The QSC-L1 approximation

In the following, we first consider the L1 discretization in time for problem (2.1).

Let Nt be a positive integer and define a uniform temporal partition 0 = t0 < t1 < · · · <
tNt = T with time stepsize τ = T/Nt. At each time level tn, we denote αn := α(tn), and

the temporal derivatives ∂tu(X, tn) and C
0D

1−αn
t u(X, tn) are respectively discretized as

∂tu(X, tn) =
1

τ

(

u(X, tn)− u(X, tn−1)
)

+
1

τ

∫ tn

tn−1

∂ttu(X, t)(t − tn−1)dt

=: δτu(X, tn) + r1,n, (2.3)

C
0D

1−αn
t u(X, tn) =

1

Γ(αn)

n
∑

k=1

[

∫ tk

tk−1

δτu(X, tk)

(tn − t)1−αn
dt+

∫ tk

tk−1

∂tu(X, t) − δτu(X, tk)

(tn − t)1−αn
dt

]

=
1

Γ(1 + αn)

n
∑

k=1

b
(n)
k

(

u(X, tk)− u(X, tk−1)
)

+
1

Γ(αn)

n
∑

k=1

∫ tk

tk−1

1

τ(tn − t)1−αn

[

∫ tk

tk−1

∫ t

s

∂ttu(X, θ)dθds

]

dt

=: δ1−αn
τ u(X, tn) + r2,n, (2.4)

where the coefficients

b
(n)
k =

1

τ
[(tn − tk−1)

αn − (tn − tk)
αn ], 1 ≤ k ≤ n

and satisfy
{

ταn−1 = b
(n)
n > b

(n)
n−1 > · · · > b

(n)
k > · · · > b

(n)
1 > 0,

αn(tn − tk−1)
αn−1 ≤ b

(n)
k ≤ αn(tn − tk)

αn−1.
(2.5)
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As proved in [50, Lemma 3.1], if α(0) = 1, the following estimates hold for r1,n in (2.3)

and r2,n in (2.4)

‖r1,n‖L∞ ≤ QN−1
t = Qτ, ‖r2,n‖L∞ ≤ QN−1

t = Qτ, 1 ≤ n ≤ Nt, (2.6)

otherwise, if α(0) < 1, the following estimates hold

‖r1,n‖L∞ ≤ Qn−α(0)N
α(0)−1
t , ‖r2,n‖L∞ ≤ Qn−α∗

Nα∗−1
t , 1 ≤ n ≤ Nt. (2.7)

Here and what follows, Q with or without subscripts is a positive constant independent

of the mesh parameters, but may have different values at different circumstances.

Next, for the spatial discretization, we employ the well-known QSC approximation.

Let Nx and Ny be two positive integers, and define a uniform partition ∆ := ∆x ×∆y

of Ω as

∆x := {xL = x0 < x1 < · · · < xNx = xR},

∆y := {yL = y0 < y1 < · · · < yNy = yR}

with mesh sizes ∆x = (xR − xL)/Nx and ∆y = (yR − yL)/Ny. Let h := max{∆x,∆y}.

Define the index sets

ω̄ =
{

(i, j) | 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1
}

,

ω =
{

(i, j) | 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny

}

and ∂ω = ω̄ \ ω. Moreover, let M := Mx ⊗My be the space of piecewise biquadratic

polynomials with respect to ∆ such that

Mx :=
{

v ∈ C1(xL, xR) : v|[xj−1,xj ] ∈ P
2(x), 1 ≤ j ≤ Nx

}

,

My :=
{

v ∈ C1(yL, yR) : v|[yk−1,yk] ∈ P
2(y), 1 ≤ k ≤ Ny

}

,

where P
2(·) represent the set of quadratic polynomials with respect to a single variable.

Note that the basis functions for the space Mx is defined as

φj(x) = φ

(

x− xL
∆x

− j + 2

)

, j = 0, 1, . . . , Nx + 1,

where

φ(x) =
1

2























x2, 0 ≤ x ≤ 1,

−2(x− 1)2 + 2(x− 1) + 1, 1 ≤ x ≤ 2,

(3− x)2, 2 ≤ x ≤ 3,

0, elsewhere.

Thus, the basis functions for M are defined as the tensor products of the basis functions

for the spaces Mx and My. Therefore, for each n = 0, 1, . . . , Nt, the quadratic spline

solution Un(X) ∈ M can be represented as

Un(X) =

Nx+1
∑

i=0

Ny+1
∑

j=0

cni,jφi(x)φj(y), (2.8)

where {cni,j} are to be determined below.
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At each time level tn, we approximate (2.1) using formula (2.3)-(2.4) and (2.8),

and then taking values of the resulting equations at the collocation points

∆c :=
{

Xi,j = (ξxi , ξ
y
j ), ξ

x
0 = xL, ξ

x
i = (xi−1 + xi)/2, i = 1, . . . , Nx, ξ

x
Nx+1 = xR,

ξy0 = yL, ξ
y
j = (yj−1 + yj)/2, j = 1, . . . , Ny, ξ

y
Ny+1 = yR

}

(2.9)

to derive the so-called QSC-L1 scheme

δτθxθyc
n
i,j + λδ1−αn

τ θxθyc
n
i,j

= d1ηxθyc
n
i,j + d2θxηyc

n
i,j + fn

i,j, (i, j) ∈ ω, (2.10a)

θxθyc
n
i,j = ϕn

i,j , (i, j) ∈ ∂ω, (2.10b)

θxθyc
0
i,j = uoi,j, (i, j) ∈ ω̄ (2.10c)

for 1 ≤ n ≤ Nt. Here, vni,j = v(ξxi , ξ
y
j , tn) for v = f, ϕ, uo, and the operators θx and ηx

are defined by

θxc
n
i,j :=

1

8











4cn0,j + 4cn1,j , i = 0,

cni−1,j + 6cni,j + cni+1,j , i = 1, 2, . . . , Nx,

4cnNx,j
+ 4cnNx+1,j , i = Nx + 1,

(2.11)

ηxc
n
i,j :=

1

∆x2
(

cni−1,j − 2cni,j + cni+1,j

)

, i = 1, 2, . . . , Nx. (2.12)

Likewise, the operators θy and ηy can also be defined.

2.2. The ADI-QSC-L1 approximation

In this subsection, we consider an ADI approach for the approximation of the QSC-

L1 method, in which the computational cost can be further reduced for large-scale

modeling and simulations of (2.1).

Denote

sn :=
1

τ
+

λb
(n)
n

Γ(1 + αn)
= O(τ−1).

Then, the QSC-L1 scheme (2.10a) can be rewritten as
[

θxθy −
d1
sn

ηxθy −
d2
sn

θxηy

]

cni,j = Fn
i,j , (i, j) ∈ ω, (2.13)

where

Fn
i,j :=

1

snτ
θxθyc

n−1
i,j +

λ

snΓ(1 + αn)

[

n−1
∑

k=1

(

b
(n)
k+1 − b

(n)
k

)

θxθyc
k
i,j + b

(n)
1 θxθyc

0
i,j

]

+
1

sn
fn
i,j.

Thus, an ADI approach, named ADI-QSC-L1, for approximation of model (2.1) from

tn−1 to tn can be proposed as follows:
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Step 1. For each j = 1, 2, . . . , Ny, solve a series of (Nx + 2)-by-(Nx + 2) linear algebra

systems along x-direction































θxc
∗
0,j =

(

θy −
d2
sn

ηy

)

θxc
n
0,j ,

(

θx −
d1
sn

ηx

)

c∗i,j =
d1d2
s2n

ηxηyc
n−1
i,j + Fn

i,j, i = 1, 2, . . . , Nx,

θxc
∗
Nx+1,j =

(

θy −
d2
sn

ηy

)

θxc
n
Nx+1,j ,

(2.14)

where {θxc
n
0,j} and {θxc

n
Nx+1,j} on the right-hand side of (2.14) are respectively given

by solving (2.10b) at the left and right boundaries via

θy(θxc
n
0,j) = ϕn

0,j , θy(θxc
n
Nx+1,j) = ϕn

Nx+1,j, j = 0, 1, . . . , Ny + 1. (2.15)

Step 2. For each i = 1, 2, . . . , Nx, solve a series of (Ny + 2)-by-(Ny + 2) linear algebra

systems along y-direction

(

θy −
d2
sn

ηy

)

cni,j = c∗i,j, j = 1, 2, . . . , Ny (2.16)

with boundary equations θyc
n
i,0 and θyc

n
i,Ny+1 determined by (2.10b) at the bottom and

top boundaries that

θx(θyc
n
i,0) = ϕn

i,0, θx(θyc
n
i,Ny+1) = ϕn

i,Ny+1, i = 0, 1, . . . , Nx + 1. (2.17)

Finally, using the data {θxc
n
0,j} and {θxc

n
Nx+1,j} determined by (2.15), the left and

right boundary values {cn0,j} and {cnNx+1,j} are given by

cn0,j = 2θxc
n
0,j − cn1,j, cnNx+1,j = 2θxc

n
Nx+1,j − cnNx,j

, j = 0, 1, . . . , Ny + 1, (2.18)

where {cn1,j} and {cnNx,j
} are obtained by linear systems (2.16)-(2.17).

Remark 2.1. For the first step of the aforementioned ADI-QSC-L1 scheme, we firstly

have to solve two linear tri-diagonal systems (2.15) with scale (Ny + 2)-by-(Ny + 2),
to provide all the boundary values {θxc

n
0,j} and {θxc

n
Nx+1,j} for (2.14). Secondly, we

have to solve two linear tri-diagonal systems (2.17) with scale (Nx +2)-by-(Nx +2), to

provide the boundary equations {θyc
n
i,0} and {θyc

n
i,Ny+1} for (2.16) in the second step.

Remark 2.2. We can see that, each system in (2.14) and (2.16) is linear, tri-diagonal,

and only along one space direction, which can be solved efficiently using Thomas al-

gorithm in O(Nx) or O(Ny) flops per time step. Thus, the computational cost is dra-

matically reduced compared with the QSC-L1 scheme (2.10). However, the calculation

of the right-hand side of (2.13) involves the tridiagonal-matrix-vector multiplications

of all the history time levels, which corresponds to O(nNxNy) operations. Thus, the
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total computational complexity for the ADI-QSC-L1 scheme (2.14)-(2.18) is of order

O(N2
t NxNy), which is still computationally cost for long-term or small time stepsize

modeling. Besides, the memory requirement is O(NtNxNy) due to the nonlocal prop-

erty of the time-fractional derivative. Therefore, an efficient solver is further required

for the ADI-QSC-L1 method, and this shall be discussed in Section 4.

Remark 2.3. Note that the ADI-QSC-L1 scheme (2.14)-(2.18) is equivalent to



















(

θx −
d1
sn

ηx

)(

θy −
d2
sn

ηy

)

cni,j =
d1d2
s2n

ηxηyc
n−1
i,j + Fn

i,j, (i, j) ∈ ω,

θxθyc
n
i,j = ϕn

i,j, (i, j) ∈ ∂ω,

θxθyc
0
i,j = uoi,j, (i, j) ∈ ω̄

(2.19)

for n = 1, . . . , Nt. In fact, compared with the direct QSC-L1 discretization (2.13), the

ADI-QSC-L1 scheme (2.19) can be viewed as adding a high-order perturbation term

r3,n :=
d1d2
s2n

ηxηy

(

cni,j − cn−1
i,j

)

= O(τ3)

into (2.13). Thus, the proposed ADI-QSC-L1 scheme (2.14)-(2.18) is actually a D’Yako-

nov type ADI scheme.

3. Analysis of the ADI-QSC-L1 scheme

In this section, we shall analyze the ADI-QSC-L1 scheme (2.14)-(2.18) via the

equivalent form (2.19) with respect to discrete L2 norm.

3.1. Stability of the ADI-QSC-L1 scheme

We define

Vh =
{

v = (vi,j) ∈ R
(Nx+2)×(Ny+2) : (i, j) ∈ ω̄

}

,

V0
h =

{

v ∈ Vh : θxθyvi,ℓ = θxθyvκ,j = 0, κ = 0, Nx + 1, ℓ = 0, Ny + 1, (i, j) ∈ ω̄
}

.

For any w,v ∈ V0
h, define the discrete inner products and norms

(w,v) := ∆x∆y

Nx
∑

i=1

Ny
∑

j=1

wi,j vi,j, ‖v‖2 := (v,v),

〈δxw, δxv〉x := ∆x∆y

Nx+1
∑

i=1

Ny
∑

j=1

(δxwi,j)(δxvi,j), ‖δxv‖
2
x := 〈δxv, δxv〉x,

where δxvi,j = (vi,j − vi−1,j)/∆x, and similarly the discrete inner product 〈δyw, δyv〉y
and norm ‖δyv‖y can also be defined. We further define
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〈δxδyw, δxδyv〉xy := ∆x∆y

Nx+1
∑

i=1

Ny+1
∑

j=1

(δxδywi,j)(δxδyvi,j),

‖δxδyv‖
2
xy := 〈δxδyv, δxδyv〉xy.

The following lemmas play important roles in the stability analysis of the ADI-QSC-

L1 scheme.

Lemma 3.1. For any v ∈ V0
h, we have

(ηxθyv,θxθyv) = −〈δxθyv, δxθxθyv〉x,

(ηyθxv,θyθxv) = −〈δyθxv, δyθyθxv〉y.

Proof. We only prove the first conclusion, as the second one is a similar result along

the y-direction. According to the definitions of the operators ηx and θx, we have

(ηxθyv,θxθyv) = ∆y

Nx
∑

i=1

Ny
∑

j=1

(δxθyvi+1,j − δxθyvi,j)(θxθyvi,j).

Noting that

θxθyv0,j = θxθyvNx+1,j = 0,

and using summation by parts, we get

(ηxθyv,θxθyv) = −∆x∆y

Nx+1
∑

i=1

Ny
∑

j=1

(δxθyvi,j)(δxθxθyvi,j) = −〈δxθyv, δxθxθyv〉x.

This completes the proof.

Lemma 3.2. For any v ∈ V0
h, we have

〈δxθxθyv, δxθyv〉x ≥
1

4
‖δxθyv‖

2
x,

〈δyθxθyv, δyθxv〉y ≥
1

4
‖δyθxv‖

2
y.

Proof. We only prove the first conclusion, as the second one can be proved similarly.

Following the homogeneous boundary conditions, we derive

〈δxθxθyv, δxθyv〉x = ∆x∆y

Nx+1
∑

i=1

Ny
∑

j=1

(δxθyvi,j)(δxθxθyvi,j) =: I + II + III, (3.1)

where

I =
∆x∆y

8

Nx
∑

i=2

Ny
∑

j=1

(δxθyvi,j)(δxθyvi−1,j + 6δxθyvi,j + δxθyvi+1,j),
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II =
∆y

8

Ny
∑

j=1

(δxθyv1,j)(θyv2,j + 2θyv1,j − 3θyv0,j),

III =
∆y

8

Ny
∑

j=1

(δxθyvNx+1,j)(3θyvNx+1,j − 2θyvNx,j − θyvNx−1,j).

First, using ab ≥ (−1/2)(a2 + b2) we see

I ≥
∆x∆y

8

Nx
∑

i=2

Ny
∑

j=1

[

−
1

2
(δxθyvi−1,j)

2 + 5(δxθyvi,j)
2 −

1

2
(δxθyvi+1,j)

2

]

.

Second, for the homogeneous boundary conditions θxθyv0,j = 0 for j = 1, . . . , Ny, we

have

θyv1,j = −θyv0,j , (3.2)

which leads to

II =
∆x∆y

8

Ny
∑

j=1

(δxθyv1,j) [δxθyv2,j + 3δxθyv1,j ]

≥
∆x∆y

8

Ny
∑

j=1

[

5

2
(δxθyv1,j)

2 −
1

2
(δxθyv2,j)

2

]

,

and similarly, because of θxθyvNx+1,j = 0, the third term is bounded below as

III ≥
∆x∆y

8

Ny
∑

j=1

[

5

2
(δxθyvNx+1,j)

2 −
1

2
(δxθyvNx,j)

2

]

.

Thus, inserting the above estimates into (3.1), we immediately get

〈δxθxθyv, δxθyv〉x

≥
∆x∆y

8

Ny
∑

j=1

[

2(δxθyv1,j)
2 + 4

Nx
∑

i=2

(δxθyvi,j)
2 + 2(δxθyvNx+1,j)

2

]

≥
1

4
‖δxθyv‖

2
x,

which proves the first conclusion of Lemma 3.2.

Lemma 3.3. For any v ∈ V0
h, we have

1

32
‖δxδyv‖

2
xy ≤ (ηxηyv,θxθyv) ≤

23

32
‖δxδyv‖

2
xy.
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Proof. Using summation by parts for the indices j and i, respectively, we have

(ηxηyv,θxθyv) = −〈δxηyv, δxθxθyv〉x = 〈δxδyv, δxδyθxθyv〉xy.

Then, according to the definition of inner product, we see

〈δxδyv, δxδyθxθyv〉xy

= ∆x∆y

Nx+1
∑

i=1

Ny+1
∑

j=1

(θxθyδxδyvi,j)(δxδyvi,j)

= ∆x∆y

[

(θxθyδxδyv1,1)(δxδyv1,1) +

Ny
∑

j=2

(θxθyδxδyv1,j)(δxδyv1,j)

+ (θxθyδxδyv1,Ny+1)(δxδyv1,Ny+1) +
Nx
∑

i=2

(θxθyδxδyvi,1)(δxδyvi,1)

+

Nx
∑

i=2

Ny
∑

j=2

(θxθyδxδyvi,j)(δxδyvi,j) +

Nx
∑

i=2

(θxθyδxδyvi,Ny+1)(δxδyvi,Ny+1)

+ (θxθyδxδyvNx+1,1)(δxδyvNx+1,1) +

Ny
∑

j=2

(θxθyδxδyvNx+1,j)(δxδyvNx+1,j)

+ (θxθyδxδyvNx+1,Ny+1)(δxδyvNx+1,Ny+1)

]

=:

9
∑

i=1

Pi. (3.3)

For the term P1 in (3.3), since θxθyvi,0 = 0 for i = 0, 1, . . . , Nx + 1, we have

θxθyδxδyv1,1 =
1

∆x∆y
θxθy(v1,1 − v0,1 − v1,0 + v0,0) =

1

∆x∆y
θxθyv1,1,

and thus by (3.2), we see

P1 = (δxδyv1,1)(θxθyv1,1)

=
1

8
(δxδyv1,1)[θyv2,1 − θyv1,1 + 3(θyv1,1 − θyv0,1)]

=
∆x

8
(δxδyv1,1)[δxθyv2,1 + 3δxθyv1,1]. (3.4)

Furthermore, taking the same routine for the operator θy in (3.4), we can obtain

P1 =
∆x∆y

64
(δxδyv1,1)[δxδyv2,2 + 3δxδyv2,1 + 3δxδyv1,2 + 9δxδyv1,1],

from which and using the inequality ab ≥ (−1/2)(a2 + b2), we have

P1 ≥
∆x∆y

128

[

11(δxδyv1,1)
2 − (δxδyv2,2)

2 − 3(δxδyv2,1)
2 − 3(δxδyv1,2)

2
]

.
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Similarly, for the terms P3, P7 and P9 we have

P3 ≥
∆x∆y

128

[

11(δxδyv1,Ny+1)
2 − (δxδyv2,Ny)

2 − 3(δxδyv2,Ny+1)
2 − 3(δxδyv1,Ny)

2
]

,

P7 ≥
∆x∆y

128

[

11(δxδyvNx+1,1)
2 − (δxδyvNx,2)

2 − 3(δxδyvNx+1,2)
2 − 3(δxδyvNx,1)

2
]

,

P9 ≥
∆x∆y

128

[

11(δxδyvNx+1,Ny+1)
2 − (δxδyvNx,Ny)

2 − 3(δxδyvNx+1,Ny)
2

− 3(δxδyvNx,Ny+1)
2
]

.

For the term P2, by the homogeneous boundary conditions, we have

θxθyδxδyv1,j =
1

∆x
θxθyδyv1,j

=
1

8∆x
δyθy(v2,j + 6v1,j + v0,j)

=
1

8∆x
δyθy[v2,j − v1,j + 3(v1,j − v0,j)]

=
1

8
δyθyδx(v2,j + 3v1,j)

=
1

64
δxδy(v2,j−1 + 6v2,j + v2,j+1 + 3v1,j−1 + 18v1,j + 3v1,j+1)

for j = 2, . . . , Ny. Then,

P2 ≥
∆x∆y

128

Ny
∑

j=2

[

22(δxδyv1,j)
2 − 3(δxδyv1,j−1)

2 − 3(δxδyv1,j+1)
2

− (δxδyv2,j−1)
2 − 6(δxδyv2,j)

2 − (δxδyv2,j+1)
2
]

.

Similarly, we have

P4 ≥
∆x∆y

128

Nx
∑

i=2

[

22(δxδyvi,1)
2 − 3(δxδyvi−1,1)

2 − 3(δxδyvi+1,1)
2

− (δxδyvi−1,2)
2 − 6(δxδyvi,2)

2 − (δxδyvi+1,2)
2
]

,

P6 ≥
∆x∆y

128

Nx
∑

i=2

[

22(δxδyvi,Ny+1)
2 − 3(δxδyvi−1,Ny+1)

2 − 3(δxδyvi+1,Ny+1)
2

− (δxδyvi−1,Ny)
2 − 6(δxδyvi,Ny)

2 − (δxδyvi+1,Ny)
2
]

,

P8 ≥
∆x∆y

128

Ny
∑

j=2

[

22(δxδyvNx+1,j)
2 − 3(δxδyvNx+1,j−1)

2 − 3(δxδyvNx+1,j+1)
2

− (δxδyvNx,j−1)
2 − 6(δxδyvNx,j)

2 − (δxδyvNx,j+1)
2
]

.
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Finally, for the term P5, we have for i = 2, . . . , Nx, j = 2, . . . , Ny,

θxθyδxδyvi,j =
1

64
δxδy

(

vi−1,j−1 + 6vi,j−1 + vi+1,j−1 + 6vi−1,j + 36vi,j

+ 6vi+1,j + vi−1,j+1 + 6vi,j+1 + vi+1,j+1

)

,

and thus

P5 ≥
∆x∆y

128

Nx
∑

i=2

Ny
∑

j=2

[

44(δxδyvi,j)
2 − (δxδyvi−1,j−1)

2 − 6(δxδyvi,j−1)
2

− (δxδyvi+1,j−1)
2 − 6(δxδyvi−1,j)

2 − 6(δxδyvi+1,j)
2

− (δxδyvi−1,j+1)
2 − 6(δxδyvi,j+1)

2 − (δxδyvi+1,j+1)
2
]

.

Now, inserting the lower-bound estimates of P1 −P9 into (3.3), we have

〈δxδyv, δxδyθxθyv〉xy

≥
∆x∆y

128

[

8

Nx
∑

i=2

(δxδyvi,1)
2 + 16

Nx−1
∑

i=2

(δxδyvi,2)
2 + 16

Nx
∑

i=3

(δxδyvi,Ny)
2

+ 8

Nx
∑

i=2

(δxδyvi,Ny+1)
2 + 8

Ny
∑

j=2

(δxδyv1,j)
2 + 16

Ny
∑

j=3

(δxδyv2,j)
2

+ 16

Ny−1
∑

j=2

(δxδyvNx,j)
2 + 8

Ny
∑

j=2

(δxδyvNx+1,j)
2 + 4(δxδyv1,1)

2

+ 4(δxδyvNx+1,1)
2 + 4(δxδyvNx+1,Ny+1)

2 + 4(δxδyv1,Ny+1)
2

+ 36

Nx−1
∑

i=3

Ny−1
∑

j=3

(δxδyvi,j)
2

]

≥
1

22
‖δxδyv‖

2
xy,

which proves the left part of the conclusion.

On the other hand, by a similar routine we can derive the upper-bound of Pi (i =
1, . . . , 9), and therefore

〈δxδyv, δxδyθxθyv〉xy

≤
∆x∆y

128

[

46

Nx
∑

i=2

(δxδyvi,1)
2 + 46

Nx
∑

i=2

(δxδyvi,Ny+1)
2 + 46

Ny
∑

j=2

(δxδyv1,j)
2

+ 46

Ny
∑

j=2

(δxδyvNx+1,j)
2 + 23(δxδyv1,1)

2 + 23(δxδyvNx+1,1)
2
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+ 23(δxδyv1,Ny+1)
2 + 23(δxδyvNx+1,Ny+1)

2 + 92

Nx
∑

i=2

Ny
∑

j=2

(δxδyvi,j)
2

]

≤
23

32
‖δxδyv‖

2
xy,

which proves the right part of the conclusion.

With the help of the above preliminary lemmas, the stability of the ADI-QSC-L1
scheme is included in the following theorem.

Theorem 3.1 (Stability). Let {cni,j | (i, j) ∈ ω̄, 0 ≤ n ≤ Nt} be the solution of the ADI-

QSC-L1 scheme (2.19). Then, we have

‖θxθyc
n‖2 ≤ Q

[

‖θxθyc
0‖2 + τ2d1d2‖δxδyc

0‖2xy + τ

n
∑

k=1

‖fk‖2

]

,

where Q is a positive constant.

Proof. We first rewrite (2.19) into the following equivalent form:

(

snθxθy − d1ηxθy − d2θxηy +
d1d2
sn

ηxηy

)

cni,j =
d1d2
sn

ηxηyc
n−1
i,j + snF

n
i,j. (3.5)

Then, multiplying both sides of (3.5) by ∆x∆yθxθyc
n
i,j, and summing up for i from 1

to Nx and for j from 1 to Ny, we obtain

sn ‖θxθyc
n‖2 +

d1d2
sn

(ηxηyc
n,θxθyc

n)

=
1

τ

(

θxθyc
n−1,θxθyc

n
)

+
λ

Γ(1 + αn)

n−1
∑

k=1

(

b
(n)
k+1 − b

(n)
k

)(

θxθyc
k,θxθyc

n
)

+
λb

(n)
1

Γ(1 + αn)

(

θxθyc
0,θxθyc

n
)

+ d1 (ηxθyc
n,θxθyc

n) + d2 (θxηyc
n,θxθyc

n)

+
d1d2
sn

(

ηxηyc
n−1,θxθyc

n
)

+ (fn,θxθyc
n) . (3.6)

For the fourth and fifth terms on the right-hand side of (3.6), by using Lemmas 3.1-3.2,

we have

d1 (ηxθyc
n,θxθyc

n) + d2 (θxηyc
n,θxθyc

n)

= −d1 〈δxθxθyc
n, δxθyc

n〉
x
− d2 〈δyθxθyc

n, δyθxc
n〉

y

≤ −
d1
4
‖δxθyc

n‖2x −
d2
4
‖δyθxc

n‖2y ≤ 0. (3.7)
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Notice that (2.11) implies that θx is a symmetric positive definite operator. Then,

there exists an operator ϑx satisfying θx = ϑ2
x, and similarly, there is also an operator

ϑy satisfying θy = ϑ2
y. Similar to the proof of Lemma 3.1, we have

(

ηxηyc
n−1,θxθyc

n
)

=
〈

δxδyϑxϑyc
n−1, δxδyϑxϑyc

n
〉

xy
. (3.8)

Inserting (3.7)-(3.8) into (3.6), and by Cauchy-Schwarz inequality we get

sn‖θxθyc
n‖2 +

d1d2
sn

‖δxδyϑxϑyc
n‖2xy

≤
1

2τ

[

‖θxθyc
n−1‖2 + ‖θxθyc

n‖2
]

+
λ

2Γ(1 + αn)

n−1
∑

k=1

(

b
(n)
k+1 − b

(n)
k

)[

‖θxθyc
k‖2 + ‖θxθyc

n‖2
]

+
λb

(n)
1

2Γ(1 + αn)

[

‖θxθyc
0‖2 + ‖θxθyc

n‖2
]

+
1

2

[

‖fn‖2 + ‖θxθyc
n‖2

]

+
d1d2
2sn

[

‖δxδyϑxϑyc
n−1‖2xy + ‖δxδyϑxϑyc

n‖2xy
]

≤
1

2τ
‖θxθyc

n−1‖2 +
λ

2Γ(1 + αn)

n−1
∑

k=1

(b
(n)
k+1 − b

(n)
k )‖θxθyc

k‖2

+
λb

(n)
1

2Γ(1 + αn)
‖θxθyc

0‖2 +
d1d2
2sn

‖δxδyϑxϑyc
n−1‖2xy

+
1

2
‖fn‖2 +

sn + 1

2
‖θxθyc

n‖2 +
d1d2
2sn

‖δxδyϑxϑyc
n‖2xy,

where the monotonicity of the coefficients {b
(n)
k } in (2.5) has been used. We further

have

τµn‖θxθyc
n‖2 + τ

d1d2
sn

‖δxδyϑxϑyc
n‖2xy

≤ ‖θxθyc
n−1‖2 +

λτ

Γ(1 + αn)

n−1
∑

k=1

(

b
(n)
k+1 − b

(n)
k

)

‖θxθyc
k‖2

+
λτb

(n)
1

Γ(1 + αn)
‖θxθyc

0‖2 + τ
d1d2
sn

‖δxδyϑxϑyc
n−1‖2xy + τ‖fn‖2, (3.9)

where, for τ sufficiently small, µn := sn−1 > 0. Furthermore, note that 1/sn < τ ≤ 2τ ,

and thus for τ sufficiently small,

1

µn

< τ ≤ 2τ,
sn
µn

= 1 +
1

µn

≤ 1 + 2τ. (3.10)

We further denote

σm :=
1

τ
+

λ(b
(m)
m − b

(m)
m−1)

Γ(1 + αm)
=

1

τ
+

λ(2− 2αm)ταm

τΓ(1 + αm)
.
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Next, we start from (3.9) to prove the following induction result:

‖θxθyc
n‖2 +

d1d2
snµn

‖δxδyϑxϑyc
n‖2xy ≤ Φn, (3.11)

where

Φ0 := ‖θxθyc
0‖2 + τ2d1d2‖δxδyϑxϑyc

0‖2xy,

Φk := (1 +Q0τ)
k Φ0 + τ

k
∑

l=1

(1 +Q0τ)
k−l ‖f l‖2, k ≥ 1,

and Q0 ≥ 2 is some positive constant to be specified.

First, for n = 1, (3.9) reduces to

‖θxθyc
1‖2 +

d1d2
s1µ1

‖δxδyϑxϑyc
1‖2xy

≤
s1
µ1

‖θxθyc
0‖2 +

d1d2
s1µ1

‖δxδyϑxϑyc
0‖2xy +

1

µ1
‖f1‖2

≤ (1 + 2τ)Φ0 + τ‖f1‖2,

which satisfies (3.11) for n = 1.

Second, we assume that (3.11) holds for all n ≤ m − 1. By taking n = m in (3.9)

we see

τµm‖θxθyc
m‖2 + τ

d1d2
sm

‖δxδyϑxϑyc
m‖2xy

≤ τσm‖θxθyc
m−1‖2 + τ

d1d2
sm

‖δxδyϑxϑyc
m−1‖2xy

+
λτ

Γ(1 + αm)

m−2
∑

k=1

(

b
(m)
k+1 − b

(m)
k

)

‖θxθyc
k‖2

+
λτb

(m)
1

Γ(1 + αm)
‖θxθyc

0‖2 + τ‖fm‖2. (3.12)

Note that

(2− 2αm−1)ταm−1

Γ(1 + αm−1)

/(2− 2αm)ταm

Γ(1 + αm)
=

2− 2αm−1

2− 2αm
·

Γ(1 + αm)

Γ(1 + αm−1)
· ταm−1−αm , (3.13)

and for enough small τ , we have

2αm

2αm−1
= 2α

′(ξ1)τ = exp
(

α′(ξ1)τ ln 2
)

≤ 1 +Q1τ

=⇒
2− 2αm−1

2− 2αm
≤

2− 2αm−1

2− (1 +Q1τ)2αm−1

= 1 +
Q12

αm−1

2− (1 +Q1τ)2αm−1
τ ≤ 1 +Q2τ,
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Γ(1 + αm)

Γ(1 + αm−1)
= 1 +

Γ′(1 + α(ξ2))α
′(ξ2)

Γ(1 + αm−1)
τ ≤ 1 +Q3τ,

ταm−1−αm = τ−α′(ξ3)τ = exp(−α′(ξ3)τ ln τ)

= exp
(

− α′(ξ3)τ
1−α∗τα∗ ln τ

)

≤ 1 +Q4τ
1−α∗ ,

where ξi ∈ (tm−1, tm) and Qi are positive constants for 1 ≤ i ≤ 4. Thus, inserting these

estimates into (3.13), we get

(2− 2αm−1)ταm−1

Γ(1 + αm−1)
≤

(

1 + 2Q4τ
1−α∗

) (2− 2αm)ταm

Γ(1 + αm)
,

and further we have

σm−1

σm
≤

[

1

τ
+
(

1 + 2Q4τ
1−α∗

)λ(2− 2αm)ταm

τΓ(1 + αm)

] [

1

τ
+

λ(2− 2αm)ταm

τΓ(1 + αm)

]−1

≤ 1 +

[

2Q4τ
1−α∗

λ(2− 2αm)ταm

τΓ(1 + αm)

] [

1

τ
+

λ(2− 2αm)ταm

τΓ(1 + αm)

]−1

≤ 1 +

(

2Q4
λ(2− 2αm)

Γ(1 + αm)
ταm−α∗

)

τ ≤ 1 +Q5τ,

where in the last step we have used the fact that αm ≥ α∗, and the constant Q5 is

chosen such that

Q5 ≥ 2Q4
λ(2− 2αm)

Γ(1 + αm)
ταm−α∗ .

Moreover, we can prove that
sm−1

sm
≤ 1 +Q5τ,

and thus, for τ sufficiently small, there exists a positive constant Q6 ≥ 2Q5, such that

1

smσm
≤ (1 +Q6τ)

1

sm−1σm−1
.

With the above preliminary conclusions, we insert the induction hypothesis (3.11) into

(3.12) to see

τµm‖θxθyc
m‖2 + τ

d1d2
sm

‖δxδyϑxϑyc
m‖2xy

≤ τσm(1 +Q6τ)

[

‖θxθyc
m−1‖2 +

d1d2
sm−1σm−1

‖δxδyϑxϑyc
m−1‖2xy

]

+
λτ

Γ(1 + αm)

m−2
∑

k=1

(

b
(m)
k+1 − b

(m)
k

)

‖θxθyc
k‖2 +

λτb
(m)
1

Γ(1 + αm)
‖θxθyc

0‖2 + τ‖fm‖2

≤ τσm(1 +Q6τ)Φ
m−1 +

λτ

Γ(1 + αm)

m−2
∑

k=1

(

b
(m)
k+1 − b

(m)
k

)

Φk
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+
λτb

(m)
1

Γ(1 + αm)
‖θxθyc

0‖2 + τ‖fm‖2

≤

(

τσm(1 +Q6τ) +
λτ

Γ(1 + αm)

m−2
∑

k=1

(

b
(m)
k+1 − b

(m)
k

)

+
λτb

(m)
1

Γ(1 + αm)

)

Φm−1 + τ‖fm‖2

≤ τsm (1 +Q6τ)Φ
m−1 + τ‖fm‖2. (3.14)

Then, divided by τµm on both sides of (3.14), together with the inequalities in (3.10)

and choosing Q0 ≥ 2(Q6 + 2) such that

(1 + 2τ)(1 +Q6τ) ≤ 1 +Q0τ,

we get

‖θxθyc
m‖2 +

d1d2
smµm

‖δxδyϑxϑyc
m‖2xy ≤ (1 +Q0τ)Φ

m−1 + τ‖fm‖2 = Φm,

which completes the induction (3.11) for n = m.

Finally, note that (1 + Q0τ)
k in (3.11) is always bounded from up for sufficiently

small τ , this together with (3.8) and Lemma 3.3 imply the conclusion.

3.2. Convergence of the ADI-QSC-L1 scheme

In this subsection, we consider the convergence of the proposed ADI-QSC-L1 sche-

me (2.19) for the approximation of (2.1).

Lemma 3.4 ([29]). Let ∆c = {Xi,j} be the collocation points described in (2.9). Let

gI(X) ∈ Mx ⊗My be the quadratic spline interpolation of function g(X), satisfying

gI(Xi,j) = g(Xi,j), (i, j) ∈ ω̄. (3.15)

Then, for g(X) ∈ C4(Ω̄), the interpolation errors gI − g can be bounded by

‖∂x(gI − g)‖∞ = O(h2), ‖∂y(gI − g)‖∞ = O(h2),

|∂xx(gI − g)(ξxi , ·)| = O(h2), |∂yy(gI − g)(·, ξyj )| = O(h2)

for i = 0, 1, . . . , Nx + 1, j = 0, 1, . . . , Ny + 1.

Theorem 3.2 (Convergence). Let un = {uni,j} and Un = {Un
i,j}, where uni,j is the exact

solution of model (2.1) at (Xi,j , tn), and Un
i,j = Un(Xi,j) in the form (2.8) is the solution

of the ADI-QSC-L1 scheme (2.19). Then, we have

‖un −Un‖ ≤ Q
(

τ + h2
)

,

where Q is a positive constant independent of h and τ .
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Proof. Let unI (X) ∈ Mx⊗My be the quadratic spline interpolation of un(X) defined

by (3.15). Then, it can be expressed as

unI (X) =

Nx+1
∑

i=0

Ny+1
∑

j=0

c̄ni,jφi(x)φj(y). (3.16)

Besides, at collocation points, we have

(Un − un) (Xi,j) = (Un − unI ) (Xi,j), (i, j) ∈ ω̄. (3.17)

Similar as the construction process of the ADI-QSC-L1 method (2.19), it can be veri-

fied that the interpolation function unI (X) represented in (3.16) satisfies the following

equation:






























δτθxθy c̄
n
i,j + λδ1−αn

τ θxθy c̄
n
i,j +

d1d2
sn

ηxηy c̄
n
i,j

= d1ηxθy c̄
n
i,j + d2θxηy c̄

n
i,j +

d1d2
sn

ηxηy c̄
n−1
i,j + fn

i,j + gni,j , (i, j) ∈ ω,

θxθy c̄
n
i,j = ϕn

i,j, (i, j) ∈ ∂ω,

θxθy c̄
0
i,j = uoi,j, (i, j) ∈ ω̄,

(3.18)

where

gni,j := δτ (u
n
I − un)(Xi,j)− r1,n + λδ1−αn

τ (unI − un)(Xi,j)− λr2,n

− d1∂xx (u
n
I − un) (Xi,j)− d2∂yy (u

n
I − un) (Xi,j)

+
d1d2
sn

∂xxyy(u
n
I − un−1

I )(Xi,j),

and r1,n and r2,n are defined in (2.3)-(2.4), respectively. It is proved in [50] that

∂tu(X, ·) ∈ C[0, T ], this together with sn = O(τ−1) and Lemma 3.4 show that

|gni,j | = |r1,n|+ λ |r2,n|+O
(

τ2 + h2
)

, (i, j) ∈ ω. (3.19)

Let eni,j := c̄ni,j − cni,j . Then, subtracting (2.19) from (3.18) we obtain the following

error equation:






























δτθxθye
n
i,j + λδ1−αn

τ θxθye
n
i,j +

d1d2
sn

ηxηye
n
i,j

= d1ηxθye
n
i,j + d2θxηye

n
i,j +

d1d2
sn

ηxηye
n
i,j + gni,j, (i, j) ∈ ω,

θxθye
n
i,j = 0, (i, j) ∈ ∂ω,

θxθye
0
i,j = 0, (i, j) ∈ ω̄,

which can be rewritten as


















(

θx −
d1
sn

ηx

)(

θy −
d2
sn

ηy

)

eni,j =
d1d2
s2n

ηxηye
n−1
i,j +Hn

i,j, (i, j) ∈ ω,

θxθye
n
i,j = 0, (i, j) ∈ ∂ω,

θxθye
0
i,j = 0, (i, j) ∈ ω̄,

(3.20)
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where

Hn
i,j =

1

snτ
θxθye

n−1
i,j +

λ

snΓ(1 + αn)

[

n−1
∑

k=1

(b
(n)
k+1 − b

(n)
k )θxθye

k
i,j + b

(n)
1 θxθye

0
i,j

]

+
1

sn
gni,j .

With a similar treatment as the proof of Theorem 3.1 for (3.20), we obtain

‖Un − un
I ‖

2 = ‖θxθye
n‖2

≤ 2τ

n
∑

l=1

(1 +Q0τ)
n−l(gl,θxθye

l)

≤ 2Qτ

n
∑

l=1

‖gl‖ ‖θxθye
l‖. (3.21)

For simplicity, denote En := ‖θxθye
n‖ for n = 1, . . . , Nt, and assume that there exist

a n0 ∈ [1, Nt] such that En0 := max1≤n≤Nt E
n. Then, we obtain from (3.21) that

‖Un − un
I ‖

2 = (En)2 ≤ (En0)2 = ‖θxθye
n0‖2 ≤ 2QτEn0

n0
∑

l=1

‖g l‖,

which further implies that

‖Un − un
I ‖ = En ≤ En0 ≤ 2Qτ

n0
∑

l=1

‖g l‖ ≤ 2Qτ

Nt
∑

l=1

‖g l‖. (3.22)

Then, by (3.19) and the estimates of r1,n and r2,n in (2.6)-(2.7), if α(0) = 1, we have

τ

Nt
∑

l=1

‖gl‖ ≤ Qτ

Nt
∑

l=1

(

τ + h2
)

= O
(

τ + h2
)

. (3.23)

Otherwise,

τ

Nt
∑

l=1

‖gl‖ ≤ Qτ

Nt
∑

l=1

(

l−α(0)N
α(0)−1
t + λl−α∗

Nα∗−1
t + τ2 + h2

)

≤ Qτ

∫ 1

0

(

t−2α(0) + t−2α∗)

dt+Q(τ2 + h2) = O(τ + h2). (3.24)

Inserting (3.23)-(3.24) into (3.22) and using (3.17) finishes the proof.

4. Efficient implementation of the ADI-QSC-L1 method

We can see that the implementation of the ADI-QSC-L1 method (2.14)-(2.18) at

the current time level tn, requires all the approximations at previous time levels, and
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thus a huge memory requirement of order O(NxNyNt) and computational cost of order

O(NxNyN
2
t ) are still needed. In this section, we shall apply the ESA technique, origi-

nally proposed in [45] for variable-order Caputo fractional derivative, to the proposed

ADI-QSC-L1 method, which leads to a fast version ADI method, say the ADI-QSC-FL1
method.

At the first time level t1, the ADI-QSC-FL1 scheme is exactly the same as the ADI-

QSC-L1 scheme (2.14)-(2.18). For 2 ≤ n ≤ Nt, we have the following lemma for the

fast approximation of C
0D

1−αn
t w(tn).

Lemma 4.1 ([45]). For 2 ≤ n ≤ Nt and a given absolute tolerance error ǫ, there exist

a constant κ, integers N and N such that

κ =
2π

log 3 + α∗ log(cos 1)−1 + log ǫ−1
,

N =

⌈

log ǫ+ log Γ(1− αn)

κα∗

⌉

,

N =

⌊

logNt + log log ǫ−1 + logα∗ + 2−1

κ

⌋

,

and the variable-order Caputo fractional derivative C
0D

1−αn
t w(tn) can be fast evaluated as

∆1−αn
τ w(tn) :=

Tαn−1

Γ(αn)

N
∑

ℓ=N+1

ωn,ℓWn,ℓ[w] +
ταn−1

Γ(1 + αn)

(

w(tn)− w(tn−1)
)

(4.1)

with
∣

∣δ1−αn
τ w(tn)−∆1−αn

τ w(tn)
∣

∣ ≤ ǫ, (4.2)

where

ωn,ℓ =
κeℓκαn

Γ(1− αn)
, ̺ℓ = eℓκ,

and Wn,ℓ[w] can be computed recursively via

Wn,ℓ[w] = e−
̺ℓ (tn−tn−1)

T Wn−1,ℓ[w] + T
(

e−
̺ℓ (tn−tn−1)

T − e−
̺ℓ (tn−tn−2)

T

)

×
w(tn−1)− w(tn−2)

̺ℓ(tn−1 − tn−2)
(4.3)

for n = 2, 3, . . . , Nt, with W1,ℓ[w] = 0.

Remark 4.1. In contrast to (2.4) for the approximations of {C0D
1−αn
t w(tn)}

Nt

n=1 which

require O(Nt) memory and O(N2
t ) computational cost, the total memory require-

ment and computational cost for (4.1) respectively reduce to order O(log2 Nt) and

O(Nt log
2 Nt). This is because that the number of exponentials in (4.1), say N − N ,

is only of order O(log2 Nt), see Ref. [45]. Thus, the coefficients {ωn,ℓ}
N
ℓ=N+1 and
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{Wn,ℓ[w]}
N
ℓ=N+1 contribute to the major storage, while (4.3) shows that at each time

step one can update the quantity Wn,ℓ recursively in only O(1) computational work for

each fixed i. Therefore, the computational cost for (4.1) is of order O(log2Nt) for each

time level, which amounts for a total computational cost of order O(Nt log
2Nt) for the

approximations {∆1−αn
τ w(tn)} at all time levels.

Now, inserting the expression (4.1) with w(tn) and Wn,ℓ[w] replaced by vectors

cn = {cni,j} and Wn,ℓ[c] into the QSC-L1 scheme (2.10a), we obtain

[

snθxθy − d1ηxθy − d2θxηy

]

cni,j

= snθxθyc
n−1
i,j −

λTαn−1

Γ(αn)

N
∑

ℓ=N+1

ωn,ℓθxθy(Wn,ℓ[c])i,j + fn
i,j, (4.4)

where the matrix Wn,ℓ[c] is recursively given by (4.3) with W1,ℓ[c] = 0.

Then, by respectively adding the terms (d1d2/sn)ηxηyc
n
i,j and (d1d2/sn)ηxηyc

n−1
i,j to

left and right side of (4.4), and dividing the resulting equation by sn, we obtain the fast

version ADI-QSC-FL1 scheme
[

θxθy −
d1
sn

ηxθy −
d2
sn

θxηy +
d1d2
s2n

ηxηy

]

cni,j

=
d1d2
s2n

ηxηyc
n−1
i,j + θxθyc

n−1
i,j −

λTαn−1

snΓ(αn)

N
∑

ℓ=N+1

ωn,ℓθxθy(Wn,ℓ[c])i,j +
1

sn
fn
i,j (4.5)

for 2 ≤ n ≤ Nt. In practical implementation, the ADI-QSC-FL1 scheme (4.5) reads as

follows:

Step 1. For each j = 1, 2, . . . , Ny, solve the following linear systems along x-direction:


























































θxc
∗
0,j =

(

θy −
d2
sn

ηy

)

θxc
n
0,j ,

(

θx −
1

sn
d1ηx

)

c∗i,j =
d1d2
s2n

ηxηyc
n−1
i,j + θxθyc

n−1
i,j

−
1

sn

λnT
αn−1

Γ(αn)

N
∑

ℓ=N+1

ωn,ℓθxθy(Wn,ℓ[c])i,j +
1

sn
fn
i,j, i = 1, 2, . . . , Nx,

θxc
∗
Nx+1,j =

(

θy −
d2
sn

ηy

)

θxc
n
Nx+1,j ,

(4.6)

where {θxc
n
0,j} and {θxc

n
Nx+1,j} for j = 0, 1, . . . , Ny + 1 are obtained similarly as what

we did in (2.15).

Step 2. For each i = 1, 2, . . . , Nx, solve the following linear systems along y-direction:
(

θy −
d2
sn

ηy

)

cni,j = c∗i,j, j = 1, 2, . . . , Ny (4.7)
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with boundary equations {θyc
n
i,0} and {θyc

n
i,Ny+1} determined similarly as (2.17). Mo-

reover, {cn0,j} and {cnNx+1,j} are also given by (2.18).

Remark 4.2. As seen in the ADI-QSC-FL1 scheme (4.5), the evaluation of the variable-

order Caputo fractional derivative at the current time level only depends on the ap-

proximations at the current time interval [tn−1, tn] and its previous historical infor-

mation that stored via the matrix Wn,ℓ[c] for each ℓ. Thus, the major memory re-

quirement for the ADI-QSC-FL1 scheme (4.6)-(4.7) is the storage of such matrices for

all ℓ = N + 1 to N . Therefore, the total memory requirement for the ADI-QSC-FL1
scheme is reduced to O(NxNy log

2 Nt) compared with the ADI-QSC-L1 scheme. Be-

sides, note that at each time level, the ESA technique is only applied in the first step,

which accounts for the computational cost of order O(NxNy log
2 Nt) as discussed in

Remark 4.1, and meanwhile, only some linear tri-diagonal systems are solved in both

steps, which can be solved by the Thomas algorithm in only O(NxNy) computational

complexity. Therefore, the total computational cost for the ADI-QSC-FL1 scheme is

reduced to O(NxNyNt log
2 Nt). It is clear that both the memory requirement and com-

putational cost are much less than those for the ADI-QSC-L1 scheme developed in

Section 2, especially for long time or small time stepsize modeling.

5. Numerical experiments

In this section, three different examples in two and three space dimensions are

tested to verify the convergence orders of the ADI-QSC-L1 method and to show the

efficiency of the fast version ADI-QSC-FL1 method. All programs are run on a Lenovo

desktop with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz with Matlab R2017b.

Example 5.1. For the first example, we consider the two-dimensional model (2.1) on

the space-time domain [0, 1]2 × [0, 1], where the coefficients λ = d1 = d2 = 1 and

the source function f(X, t) is chosen such that the true solution is u(X, t) = (1 +
t2) cos(x) cos(y).

In order to investigate the convergence orders of the developed methods, we con-

sider the following three different types of variable-order α(t), i.e.:

α1(t) = cos(0.4πt),

α2(t) = 0.5
(

1 + sin(1.3πt)
)

,

α3(t) = 0.4 + 0.6

[

1− t−
sin 2π(1− t)

2π

]

.

We first fix Nx = Ny = 256 to observe the temporal convergence orders of ADI-

QSC-L1 method. By doubling the values of Nt repeatedly from 32 to 256, we show

the corresponding errors and convergence orders for different α(t) in Table 1. Next,

by choosing Nt = 131072 large enough, we test the spatial convergence orders in Ta-

ble 2. We can see that the convergence orders displayed in Tables 1-2 fit the theoretical
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Table 1: Errors and temporal convergence orders of the ADI-QSC-L1 method for Example 5.1.

α1(t) α2(t) α3(t)

Nt Error Order Nt Error Order Nt Error Order

32 1.03e-03 — 32 1.28e-03 — 32 1.00e-03 —

64 5.09e-04 1.02 64 6.26e-04 1.03 64 4.97e-04 1.01

128 2.51e-04 1.02 128 3.06e-04 1.03 128 2.46e-04 1.02

256 1.24e-04 1.02 256 1.50e-04 1.03 256 1.21e-04 1.02

≈ 1.00 ≈ 1.00 ≈ 1.00

Table 2: Errors and spatial convergence orders of the ADI-QSC-L1 method for Example 5.1.

α1(t) α2(t) α3(t)

N Error Order Error Order Error Order

8 6.99e-05 — 7.00e-05 — 6.99e-05 —

16 1.76e-05 1.99 1.76e-05 1.99 1.76e-05 1.99

32 4.25e-06 2.05 4.23e-06 2.06 4.25e-06 2.05

64 8.93e-07 2.25 8.67e-07 2.29 8.94e-07 2.25

≈ 2.00 ≈ 2.00 ≈ 2.00

Table 3: Comparisons of results obtained by different methods for Example 5.1.

QSC-L1 ADI-QSC-L1 ADI-QSC-FL1

N Nt Error Time Error Time Nexp Error Time

32 256 1.18e-04 1.17 s 1.17e-04 0.27 s 41 1.20e-04 0.36 s

64 512 5.92e-05 10 s 5.90e-05 1.58 s 51 6.14e-05 1.03 s

128 1024 2.96e-05 90 s 2.95e-05 18 s 63 3.17e-05 8 s

256 2048 1.47e-05 781 s 1.47e-05 195 s 75 1.71e-05 58 s

512 4096 7.35e-06 13589 s 7.34e-06 7406 s 89 9.58e-06 960 s

second-order spatial accuracy and first-order temporal accuracy very well. Finally, in

order to show the strong performance of the ADI-QSC-FL1 method using the ESA tech-

nique, we run the direct QSC-L1 method (2.10), the ADI-QSC-L1 method (2.14)-(2.18)

and the ADI-QSC-FL1 method (4.6)-(4.7) for comparisons. Numerical results including

errors and CPU times for α3(t) are displayed in Table 3, where Nexp = N − N for the

ESA technique. We can see that all methods generate the similar error results, while

the ADI approach consumes much less CPU running time. Moreover, the ADI-QSC-

FL1 method, which combines the ADI and ESA techniques, is able to further improve

the computational efficiency greatly. For example, with Nx = Ny = N = 512 and

Nt = 4096, all three methods yield numerical errors about magnitude 10−6, but the

running times have been reduced from 13589 seconds (= 3 hours 46 minutes 29 sec-

onds) to 7406 seconds (2 hours 3 minutes 26 seconds) to 960 seconds (16 minutes) for

the direct QSC-L1 method, the ADI-QSC-L1 method and the ADI-QSC-FL1 method.

Thus, the developed fast version ADI method shows strong potential in large-scale and

long time modeling and simulations.
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Example 5.2. In the second example, we consider a three-dimensional model (2.1) on

the space-time domain [0, 1]3 × [0, 1], where the coefficients λ = d1 = d2 = d3 = 1 and

f(X, t) is chosen such that the true smooth solution is

u(X, t) = (1 + t2) cos(x) cos(y) cos(z).

The same variable-order functions α(t) as those in Example 5.1 are employed.

In this situation, the QSC schemes for the computation of {cni,j,k} at time level tn
can be developed similarly, but are more complicated. For example, the ADI-QSC-L1
scheme reads in the following three sub-steps:

Step 1. For each j = 1, 2, . . . , Ny, k = 1, 2, . . . , Nz , solve a series of (Nx+2)-by-(Nx+2)
linear algebra systems along x-direction































θxc
∗
0,j,k =

(

θy −
d2
sn

ηy

)(

θz −
d3
sn

ηz

)

θxc
n
0,j,k,

(

θx −
d1
sn

ηx

)

c∗i,j,k = F̃n
i,j,k, i = 1, 2, . . . , Nx,

θxc
∗
Nx+1,j,k =

(

θy −
d2
sn

ηy

)(

θz −
d3
sn

ηz

)

θxc
n
Nx+1,j,k,

(5.1)

where {θxc
n
0,j,k} and {θxc

n
Nx+1,j,k} are respectively solved at boundaries x = xL and

x = xR by

θyθz(θxc
n
0,j,k) = ϕ(ξx0 , ξ

y
j , ξ

z
k, tn),

θyθz(θxc
n
Nx+1,j,k) = ϕ(ξxNx+1, ξ

y
j , ξ

z
k, tn)

(5.2)

for j = 0, 1, . . . , Ny + 1 and k = 0, 1, . . . , Nz + 1.

Step 2. For each i = 1, 2, . . . , Nx, k = 1, 2, . . . , Nz , solve a series of (Ny+2)-by-(Ny+2)
linear algebra systems along y-direction































θyc
∗∗
i,0,k =

(

θz −
d3
sn

ηz

)

θyc
n
i,0,k,

(

θy −
d2
sn

ηy

)

c∗∗i,j,k = c∗i,j,k, j = 1, 2, . . . , Ny,

θyc
∗∗
i,Ny+1,k =

(

θz −
d3
sn

ηz

)

θyc
n
i,Ny+1,k,

(5.3)

where {θyc
n
i,0,k} and {θyc

n
i,Ny+1,k} are respectively solved at boundaries y = yL and

y = yR by

θxθz(θyc
n
i,0,k) = ϕ(ξxi , ξ

y
0 , ξ

z
k, tn),

θxθz(θyc
n
i,Ny+1,k) = ϕ(ξxi , ξ

y
Ny+1, ξ

z
k , tn)

(5.4)

for i = 0, 1, . . . , Nx + 1 and k = 0, 1, . . . , Nz + 1.
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Step 3. For each i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, solve a series of (Nz+2)-by-(Nz+2)
linear algebra systems along z-direction

(

θz −
d3
sn

ηz

)

cni,j,k = c∗∗i,j,k, k = 1, 2, . . . , Nz (5.5)

with boundary equations θzc
n
i,j,0 and θzc

n
i,j,Nz+1 determined at boundaries z = zL and

z = zR by
θxθy(θzc

n
i,j,0) = ϕ(ξxi , ξ

y
j , ξ

z
0 , tn),

θxθy(θzc
n
i,j,Nz+1) = ϕ(ξxi , ξ

y
j , ξ

z
Nz+1, tn)

(5.6)

for i = 0, 1, . . . , Nx + 1 and j = 0, 1, . . . , Ny + 1.

Finally, using the data {θxc
n
0,j,k} and {θxc

n
Nx+1,j,k} determined by (5.2), the quan-

tities {cn0,j,k} and {cnNx+1,j,k} corresponding to the boundaries x = xL and x = xR are

given by

cn0,j,k = 2θxc
n
0,j,k − cn1,j,k, cnNx+1,j,k = 2θxc

n
Nx+1,j,k − cnNx,j,k

(5.7)

for j = 1, . . . , Ny and k = 1, . . . , Nz. Likewise, the quantities {cni,0,k} and {cni,Ny+1,k}

corresponding to the boundaries y = yL and y = yR are given by

cni,0,k = 2θyc
n
i,0,k − cni,1,k, cni,Ny+1,k = 2θyc

n
i,Ny+1,k − cni,Ny,k

(5.8)

for i = 1, . . . , Nx and k = 1, . . . , Nz.

At the four edges (ξxi , ξ
y
j , ξ

z
k) for i = {0, Nx + 1} and j = {0, Ny + 1}, we have

θz(θxθyc
n
i,j,k) = ϕ(ξxi , ξ

y
j , ξ

z
k, tn), k = 0, 1, . . . , Nz + 1. (5.9)

By solving the above four linear systems of order (Nz + 2)-by-(Nz + 2), we then obtain

the quantities at four corners

cn0,0,k = 4θxθyc
n
0,0,k − cn0,1,k − cn1,0,k − cn1,1,k,

cn0,Ny+1,k = 4θxθyc
n
0,Ny+1,k − cn1,Ny+1,k − cn0,Ny,k

− cn1,Ny ,k
,

cnNx+1,0,k = 4θxθyc
n
Nx+1,0,k − cnNx,0,k − cnNx+1,1,k − cnNx,1,k,

cnNx+1,Ny+1,k = 4θxθyc
n
Nx+1,Ny+1,k − cnNx,Ny+1,k − cnNx+1,Ny ,k

− cnNx,Ny,k

(5.10)

for k = 0, 1, . . . , Nz + 1.

In the following run of (5.1)-(5.10), we first fix Nx = Ny = Nz = N = 64 and show

the corresponding errors and convergence orders for different α(t) in Table 4. Then,

we choose Nt = 131072, and test the spatial convergence orders in Table 5. We can

also see that the convergence orders displayed in Tables 4-5 fit the theoretical second-

order spatial accuracy and first-order temporal accuracy pretty well. Besides, we also

compare the performance of the ADI-QSC-FL1 method with the ADI-QSC-L1 method

and the direct QSC-L1 method. Numerical results are presented in Table 6. It can be

seen that, the ADI strategy and the ESA acceleration technique are able to improve the

efficiency of the QSC-L1 method greatly.



252 J. Liu et al.

Table 4: Errors and temporal convergence orders of the ADI-QSC-L1 method for Example 5.2.

α1(t) α2(t) α3(t)

Nt Error Order Nt Error Order Nt Error Order

32 5.03e-04 – 32 6.56e-04 – 32 4.83e-04 –

64 2.58e-04 0.96 64 3.31e-04 0.99 64 2.49e-04 0.96

128 1.29e-04 1.00 128 1.64e-04 1.01 128 1.25e-04 0.99

256 6.39e-05 1.01 256 8.02e-05 1.03 256 6.22e-05 1.01

≈ 1.00 ≈ 1.00 ≈ 1.00

Table 5: Errors and spatial convergence orders of the ADI-QSC-L1 method for Example 5.2.

α1(t) α2(t) α3(t)

N Error Order Error Order Error Order

4 2.14e-04 — 2.14e-04 — 2.14e-04 —

8 5.63e-05 1.93 5.63e-05 1.93 5.63e-05 1.93

16 1.39e-05 2.02 1.38e-05 2.03 1.39e-05 2.02

32 3.13e-06 2.15 3.05e-06 2.18 3.13e-06 2.15

≈ 2.00 ≈ 2.00 ≈ 2.00

Table 6: Comparisons of results obtained by different methods for Example 5.2 with α3(t).

QSC-L1 ADI-QSC-L1 ADI-QSC-FL1

N Nt Error Time Error Time Nexp Error Time

16 512 1.74e-05 53 s 1.71e-05 7 s 18 1.75e-05 6 s

32 1024 1.21e-05 2775 s 1.20e-05 89 s 22 1.14e-05 65 s

48 2048 6.18e-06 42859 s 6.16e-06 604 s 26 5.90e-06 330 s

64 4096 — — 2.96e-06 9050 s 31 3.31e-06 1567 s

Example 5.3. In the last example, we apply the developed fast version ADI method

for the dynamic evolution modeling of variable-order time-fractional Allen-Cahn equa-

tion [19]

C
0D

α(t)
t φ− ε2∆φ+ φ(φ2 − 1) = 0 in Ω× (0, T ] := (−1, 1)2 × (0, 200] (5.11)

with the interface width ε = 0.02. The initial condition of (5.11) is chosen as

φ(x, y, 0) = −0.9 tanh

(

(x− 0.3)2 + y2 − 0.04

ε

)

tanh

(

(x+ 0.3)2 + y2 − 0.04

ε

)

× tanh

(

x2 + (y − 0.3)2 − 0.04

ε

)

tanh

(

x2 + (y + 0.3)2 − 0.04

ε

)

,

and the fractional order is taken as

α(t) = 0.5 + 0.4

[

1−
t

200
−

sin(2π(1 − t/200))

2π

]

.
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We use this model to simulate the merging of four-drops on the interface. In the

implementation of the ADI-QSC-L1 method, the nonlinear term is handled explicitly,

and a stabilized term is added from the second time instant, i.e.














(

θx −
ε2

rn
ηx

)

cn,∗i,j =
ε4

r2n
ηxηyc

n−1
i,j +Gn

i,j −
S

rn
θx

(

cn,∗i,j − cn−1,∗
i,j

)

, n ≥ 2,

(

θy −
ε2

rn
ηy

)

cni,j = cn,∗i,j ,

where S is a user-defined stabilized constant, and

Gn
i,j :=

1

b
(n)
n

[

n−1
∑

k=1

(

b
(n)
k+1 − b

(n)
k

)

φk
i,j + b

(n)
1 φ0

i,j

]

−
1

rn
φn−1
i,j

[

(

φn−1
i,j

)2
−1

]

, rn =
b
(n)
n

Γ(1 + αn)
.

In order to reduce the computational cost, we choose the following adaptive tem-

poral stepsize strategy:

τn+1 = max

{

τmin,
τmax

√

1 + η‖δτφn‖2

}

with τmin = 4.0 × 10−3, τmax = 1 and η = 1.9 × 104 [33]. The profiles of the phase

function φ obtained by direct QSC-L1 method and time adaptive ADI-QSC-L1 method

at time instants t = 1, 50, 100, 200 are shown in Fig. 1 for Nx = Ny = 256, and the num-

ber of time steps and the CPU running time are shown in Table 7. It can be seen that

the four-drops gradually merge, and the time adaptive ADI-QSC-L1 method behaves

almost the same as the direct QSC-L1 method with τ = τmin, while consume only the

almost same running time as that with τ = τmax.

Moreover, we also investigate the evolution of the Ginzburg-Landau free energy

E[u](t) =

∫

Ω

(

ε2

2
|∇φ|2 +

1

4
(1− φ2)2

)

dxdy.

In order to observe the relationship between the energy functional and the fractional

orders, we also introduce several different fractional orders

α2(t) ≡ 0.5,

α3(t) = 0.4

[

1 + sin

(

1.3πt

200

)]

,

α4(t) = 0.6− 0.4

[

1−
t

200
−

sin(2π(1 − t/200))

2π

]

,

Table 7: The number of time steps and CPU time obtained by different methods for Example 5.3.

QSC-L1 with τ = 1 QSC-L1 with τ =4.0e-3 Adaptive ADI-QSC-L1

# of steps 200 50000 1080

CPU time 17 s 36815 s 20 s
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Figure 1: Solution snapshots of Example 5.3 at t = 1, 50, 100, 200 (from left to right), for direct method
with τ = τmax (top) and τ = τmin (middle), and time adaptive ADI-QSC-L1 method (bottom).
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Figure 2: Discrete energy functional generated by the time adaptive ADI-QSC-FL1 method for Example 5.3
with fractional orders α(t), α2(t), α3(t), α4(t) (from left to right).

where α2(t) is a constant order, and α4(t) is a monotonically increasing function. The

discrete energy functionals obtained by the time adaptive ADI-QSC-FL1 method for

different fractional orders are shown in Fig. 2. We can see that generally it decays if the

variable fractional orders are constant or monotonic functions, such as α(t), α2(t) and

α4(t). However, for the case α3(t), though the discrete energy functional tends to be

stable, it is not always decreasing. There is still a big mathematical theory gap whether

the variable-order time-fractional Allen-Cahn equation is energy-dissipating or not.

6. Concluding remarks

In this paper, we first develop a QSC-L1 method for the two-dimensional variable-

order time-fractional mobile-immobile diffusion equation, and then by adding small

perturbation terms, an ADI-QSC-L1 method is further proposed. With some prepared

fundamental lemmas, we prove that the method is unconditionally stable and conver-
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gent with order O(τ + h2) in discrete L2 norm, see Theorems 3.1-3.2. Then, combined

with the ESA technique, a fast version of the ADI-QSC-L1 method, named ADI-QSC-

FL1, is proposed to further improve the computational efficiency. The proposed method

is also applicable to model (2.1) in three space dimensions. Numerical examples are

provided to verify the theoretical findings. We show that the ADI strategy is able to

reduce the running time greatly, while preserves almost the same level of observing

errors, and the ESA acceleration technique can further improve the computational ef-

ficiency. Meanwhile, numerical experiments also show that the developed ADI-QSC

methods are applicable to model phase field equations. However, it is still not sure

whether there is an energy-dissipating law for the variable-order time-fractional Allen-

Cahn equation.
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