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Abstract. In this paper, a quadratic spline collocation (QSC) method combined with
L1 time discretization in the framework of alternating direction implicit (ADI) ap-
proach, namely ADI-QSC-L1 method, is developed to solve the variable-order time-
fractional mobile-immobile diffusion equations in multi-dimensional spaces. Dis-
crete Lo norm-based stability and error estimate are carefully discussed, which
show that the proposed method is unconditionally stable and convergent with first-
order accuracy in time and second-order accuracy in space. Then, based on the
exponential-sum-approximation technique for the fast evaluation of the variable-
order Caputo fractional derivative, an efficient implementation strategy of the ADI-
QSC-L1 method, named ADI-QSC-FL1 is presented, which further improves the
computational efficiency by reduced memory requirement and computational cost.
Finally, numerical examples are provided to support both the theoretical results and
efficiency of the developed method.
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1. Introduction

A large number of research indicates that many natural phenomena and structures
can be better described by fractional differential equations (FDEs), due to the histori-
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cal memory and global correlation of the fractional operators, such as fluid flow in an
unsaturated media [32, 36], viscoelastic anomalous diffusion in complex liquids [30],
chemical reactions in underground water and so on [37]. In recent years, the time-
FDEs, which are often used to describe the subdiffusive solutes transport in hetero-
geneous media [31, 34,46] or model the memory behavior of shape-memory poly-
mer [17], have attracted great interests of researchers. Wang and Zheng [40] devel-
oped a modified two-scale variable-order time-fractional mobile-immobile equation to
model the solute transport in heterogeneous porous media, and they rigorously proved
the wellposedness and regularity of the model.

It is well-known that numerical modeling is one of the main methods for solving
many types of FDEs, and indeed various numerical methods have been developed,
such as finite difference methods [1,9, 14, 20, 28, 35, 38,39, 51], finite element meth-
ods [3,13,15,26,43,48], finite volume methods [7,8,49], spectral methods [2,44]. As
an efficient numerical tool, quadratic spline collocation (QSC) methods have been suc-
cessfully studied for integer-order differential equations [4,5, 10], and have also been
applied for FDEs, for example, Luo et al. [27] proposed a space-time QSC method in
all-at-once manner to solve the sub-diffusion equations. We combined the QSC method
and L1 formula for solving the sub-diffusion equation with fractional boundary condi-
tions, and rigorous numerical analysis is given in [24]. Besides, we also developed and
analyzed the QSC method for space-FDEs [22,23,25]. Moreover, some other types of
collocation methods for FDEs are also considered, see [16,18,42]. Recently, the au-
thors applied the QSC method for variable-order time-fractional mobile-immobile dif-
fusion equations with variably diffusive coefficients [21], and showed that the method
is unconditionally stable and convergent with first-order in time and second-order in
space with respect to some discrete and continuous Ly norms. Then, combined with
the reduced basis technique, an efficient QSC-L1-RB method was proposed to further
improve the computational efficiency. This seems the first paper on analysis of QSC
method for variable-order time-fractional model. However, for large-scale and long
time modeling and simulations, the method is still computationally expensive. There-
fore, it deserves to develop much more efficient numerical methods for the interested
two-scale variable-order model.

Alternating direction implicit (ADI) method, serving an operator spitting method,
is able to convert the multi-dimensional large-scale problem into a series of one-di-
mensional small-scale subproblems. Thus, it can reduce the computational cost greatly
and solve the model problem easily in parallel. Various ADI methods have been exten-
sively developed for time-FDEs [6,41,47]. Another efficient approach for time-FDEs is
the sum-of-exponentials (SOE) technique. Jiang et al. [12] proposed a fast evaluation
method for the constant-order Caputo fractional derivative by the SOE approximation.
This method is able to reduce the memory requirement and the computational cost
greatly. However, it can not be directly applied to the variable-order fractional deriva-
tive and related model. Recently, Zhang et al. [45] provided a variant SOE technique,
named exponential-sum-approximation (ESA), to approximate the variable-order Ca-
puto fractional derivative and variable-order time-fractional diffusion equation. In this
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paper, we will put forward an efficient numerical method from both time and space
approximation angles, for the variable-order time-fractional mobile-immobile diffusion
equations, and our contributions are mainly threefold:

* Combining the QSC method in ADI framework and the L1 temporal discretization
formula, we developed an efficient ADI-QSC-L1 method for multi-dimensional
variable-order time-fractional mobile-immobile diffusion equations, where non-
homogeneous boundary equations for the homogeneous Dirichlet boundary con-
ditions are treated technically in the ADI approach.

* Discrete L, norm-based unconditionally stability and convergence analysis of the
ADI-QSC-L1 method are rigorously discussed, and the result is proved to be first-
order accurate in time and second-order accurate in space. Furthermore, we
also discuss an efficient implementation of the ADI-QSC-L1 method by the ESA
technique to further reduce the computational cost.

* Numerical experiments for two- and three-dimensional variable-order time-frac-
tional models are presented to illustrate the convergence and efficiency of the
proposed ADI methods. Moreover, an adaptive temporal stepsize strategy is con-
sidered for the ADI-QSC-L1 approximation of the variable-order time-fractional
Allen-Cahn equation, and comparisons of the computational efficiency with the
direct method on uniform temporal grids are tested.

The outline of the paper is organized as follows. In Section 2, we first propose the
ADI-QSC-L1 method for the variable-order time-fractional mobile-immobile diffusion
equation in two space dimensions, and then analyze the stability and convergence of
the method in Section 3. Efficient implementation of the ADI-QSC-L1 method based on
the ESA technique is briefly discussed in Section 4. Three numerical experiments are
provided in Section 5 to verify the convergence and efficiency of the proposed methods.
Finally, concluding remarks are given in the last section.

2. Variable-order time-FDE and the ADI-QSC-L1 approximation

In this section, we consider the following variable-order time-FDE:

Ou(X,t) + AP *Wy(X ) = DAW(X,t) + f(X,t) in Qx I,
u(X,t) = p(X,1) on 99 x I, 2.1
u(X,0) = u(X) in Q,

where I := (0,7], Q := (x1,zRr) X (yr,yr) is a rectangular domain with sizes L; =
xr —xr,Ly = yr — yr, 0N denotes the boundary of 2, X = (z,y). The diffusion
coefficient matrix D = diag{d;,d>} with d; and ds being positive constants. Besides,
A is a positive capacity constant, f and u° are prescribed source and initial functions.
Here, we assume o € C'[0, 7], and it satisfies the following conditions:

0 <oy:= mi t) < t)=a" <1, i t) —a(0))Int exists. (2.2
aw = min off) < max olf) = o Jim (a(t) - a(0)) In (2.2)
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The variable-order Caputo fractional derivative is defined by

3
DL gte) = |y [ Q€ — 90 s

E=t

Eq. (2.1) can be used to model the process of solute transport in soil [31, 46],
and the first-order temporal derivative term in (2.1) represents the linear drift of time
for the solute particles in the mobile phase, while the fractional-order derivative term
describes the solute transport in the immobile phase, which is limited by soil struc-
ture and adsorption. The structure and porosity of soil usually depend on the previ-
ous period of rainfall or irrigation, and this historical memory can be reflected by the
fractional-order operators in the mathematical model. Moreover, it is well known that,
the constant-order time-FDEs suffer initial singularity. However, as reported in [50]
that the variable-order time-FDE (2.1) is well-posed if conditions (2.2) and suitable
smoothness assumptions on the given data are satisfied, and the initial singularity can
be resolved. Throughout the paper, we assume f and u° are sufficiently smooth.

2.1. The QSC-L1 approximation

In the following, we first consider the L1 discretization in time for problem (2.1).
Let V; be a positive integer and define a uniform temporal partition 0 = tg < t; < --- <
tny, = T with time stepsize 7 = T'/N;. At each time level ¢,,, we denote «,, := «(t,,), and
the temporal derivatives d;u(X,t,) and §D;*"u(X,t,) are respectively discretized as

1 1 [t
(X, ty) = = (u(X, tn) — w(X,th-1)) + = Opu(X, 1) (t — ty_1)dt
T T tn_1
=: 0;u(X, tn) + 7rim, (2.3)
1 < 5 u(X,t th X, t) — 6u(X,t
§DF (X, t,) = / u ’1fa) dt +/ Ol X, 8 11( 1) 4y
F(O{n) k=1 te—1 (tn - t) " th_1 (tn - t) "
__1 ¥ b (u(X, t) — (X, 1))
D1+ ap) & F ’ T
Lo " ! /tk /ta (X,0)dds| d
+ - w(X, s| dt
I(an) k=1"tk-1 T(t”_t)l_a" th—1 Vs "
=: 571_7a"u(X, tn) + 2.7, 2.49)
where the coefficients
B = Z[(ty — tp1)®" — (tn — ti)™], 1<k <n
and satisfy
ron=l = p 5 5 S s s s B s, 2.5)
ity — tp_1)m 1 < b < (b, — t)on ! '
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As proved in [50, Lemma 3.1], if «(0) = 1, the following estimates hold for r; ,, in (2.3)
and 7y, in (2.4)
Irinllize < QN;t=Qr |romllie <QN; ' =Q1, 1<n <N, (2.6)
otherwise, if «(0) < 1, the following estimates hold
il < Q@u @ ONYO ) e < QR N1 1<n<N. (2.7

Here and what follows, ) with or without subscripts is a positive constant independent
of the mesh parameters, but may have different values at different circumstances.
Next, for the spatial discretization, we employ the well-known QSC approximation.
Let N, and N, be two positive integers, and define a uniform partition A := A, x A,
of Q as
AJ; = {.%'LZ.%'O <xp <--- <IN, :mR},
Ay :={yr=yo<y1 <--- <Yn, = YR}
with mesh sizes Az = (xg — 21)/N; and Ay = (yg — yr)/Ny. Let h := max{Az, Ay}.
Define the index sets
©={(,)|0<i< Ny +1,0<j < N, + 1},
w={(i,j) | 1 <i < Ny, 1 <5 < Ny}
and Ow = @ \ w. Moreover, let M := M, ® M, be the space of piecewise biquadratic
polynomials with respect to A such that
My :={ve CYxp,zR) : Viz;_1,2;] € P?(z),1 < j < N, },
My = {ve C'(yr,yr) : Ul i) € P*(y),1 <k < Ny},
where P2(-) represent the set of quadratic polynomials with respect to a single variable.
Note that the basis functions for the space M, is defined as

T —x

where
xQ, 0<x <1,
121?42 -1)+1, 1<z<2,
o) =3 (3 —12)2, 2 <z <3,
0, elsewhere.

Thus, the basis functions for M are defined as the tensor products of the basis functions
for the spaces M, and M,,. Therefore, for each n = 0,1,..., N;, the quadratic spline
solution U™ (X) € M can be represented as

+1 Ny+1

Z > cloila)d;(w), (2.8)

=0 j=0

where {c}';} are to be determined below.
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At each time level t,,, we approximate (2.1) using formula (2.3)-(2.4) and (2.8),
and then taking values of the resulting equations at the collocation points

A, = {Xi,j = (E1.8)), § =ap, & = (v +2)/2 i = L.\ Ny, E5 41 = 21,
& =yr, & = (Yj—1+yj)/2, j=1,..., Ny, §§<;y+1 = yR} (2.9)
to derive the so-called QSC-L1 scheme

5:020,c]; + A5} 0,0,,c};

0,0,c) ; = uf;, (i,j) €@ (2.10c)

for 1 < n < N;. Here, vp = v(&7,
are defined by

], tn) for v = f,p,u°, and the operators 6, and 7,

400]“’461]’ 1 =0,
Py 6 A i=1,2,...,Ny, (2.11)
Acky A s i=N,+1,
1 .
Cn;]: A 2 CZ 17] zj+C?+1,j)7 1:1727"'7Nl" (2.12)

Likewise, the operators 8, and 7, can also be defined.

2.2. The ADI-QSC-L1 approximation

In this subsection, we consider an ADI approach for the approximation of the QSC-
L1 method, in which the computational cost can be further reduced for large-scale
modeling and simulations of (2.1).

Denote )
1 by,
ni=—4 ——=0("".
O E a0
Then, the QSC-L1 scheme (2.10a) can be rewritten as
d d
6.0, — S—lm% - 52 9:1:774 = Fj}, (4,7) € w, (2.13)
where
=0 (n) 1
n o 1 n n n 0 n
Fly = —0.0,c)7" + - 1—i—a > (Bl = 0)0:0ycl; + 0020, | + — £
n n :1 n

Thus, an ADI approach, named ADI-QSC-L1, for approximation of model (2.1) from
t,_1 to t, can be proposed as follows:
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Step 1. For each j =1,2,..., N, solve a series of (N, + 2)-by-(N, + 2) linear algebra
systems along z-direction

( N d2
OxCO,j = <0y - ;m) ercg,j,
dy . dydy _ .
<em — ;m) = ?nxnyc;fj YRR, =12, Ny, (2.14)
do

E3 _ n
\O:BCNx—i—Lj = <9y - 8_77y> echw—i—Lj,

n

where {6,cf ;} and {6.c};, | ;} on the right-hand side of (2.14) are respectively given
by solving (2.10b) at the left and right boundaries via

Gy(axcaj) = @gd‘, ay(axC?Vx+17j) = @T]{Tw‘f‘l,j’ ] = 07 17 e 7Ny + 1. (2.15)

Step 2. For eachi =1,2,..., N,, solve a series of (N, + 2)-by-(N, + 2) linear algebra
systems along y-direction

d

<0y - 8—2ny> di=c, j=1,2,...,N, (2.16)
n

with boundary equations 0,¢f, and 8,¢;’, ., determined by (2.10b) at the bottom and

top boundaries that '

0.(0,%0) = o, 00(0,cin, 1) = Pln,1s 1=0,1 ..., Ny + 1. 2.17)

Finally, using the data {6,cj ;} and {0,c}; ., ;} determined by (2.15), the left and
right boundary values {cj ;} and {c} ,, ;} are given by

087]' - 20$06L,j - CiL,j’ C?Vz“rl,j - 20$C7Vz+1,_] - C?Vz,j7 ] - 07 17 “e 7Ny + 17 (2.18)
where {cTﬂ j} and {CR;M j} are obtained by linear systems (2.16)-(2.17).

Remark 2.1. For the first step of the aforementioned ADI-QSC-L1 scheme, we firstly
have to solve two linear tri-diagonal systems (2.15) with scale (N, + 2)-by-(V, + 2),
to provide all the boundary values {6,cj ;} and {0,c}, ., ;} for (2.14). Secondly, we
have to solve two linear tri-diagonal systems (2.17) with scale (N, + 2)-by-(N, + 2), to
provide the boundary equations {6,cj,} and {6}y .} for (2.16) in the second step.

Remark 2.2. We can see that, each system in (2.14) and (2.16) is linear, tri-diagonal,
and only along one space direction, which can be solved efficiently using Thomas al-
gorithm in O(N,) or O(N,) flops per time step. Thus, the computational cost is dra-
matically reduced compared with the QSC-L1 scheme (2.10). However, the calculation
of the right-hand side of (2.13) involves the tridiagonal-matrix-vector multiplications
of all the history time levels, which corresponds to O(nN,N,) operations. Thus, the
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total computational complexity for the ADI-QSC-L1 scheme (2.14)-(2.18) is of order
O(NZN,N,), which is still computationally cost for long-term or small time stepsize
modeling. Besides, the memory requirement is O(N;N,N,) due to the nonlocal prop-
erty of the time-fractional derivative. Therefore, an efficient solver is further required
for the ADI-QSC-L1 method, and this shall be discussed in Section 4.

Remark 2.3. Note that the ADI-QSC-L1 scheme (2.14)-(2.18) is equivalent to

dq do dids _ .
(9:” N s_'”””> (9 "y> ey =g ey +FY, () €w,

y — —
n Sn n
. 2.19
amaycg‘j - 801;:]7 (17]) € awv ( )
emeycgj = ufj, (i,j) € @

forn = 1,..., N;. In fact, compared with the direct QSC-L1 discretization (2.13), the
ADI-QSC-L1 scheme (2.19) can be viewed as adding a high-order perturbation term

dyds _
A
n

into (2.13). Thus, the proposed ADI-QSC-L1 scheme (2.14)-(2.18) is actually a D’Yako-
nov type ADI scheme.

3. Analysis of the ADI-QSC-L1 scheme

In this section, we shall analyze the ADI-QSC-L1 scheme (2.14)-(2.18) via the
equivalent form (2.19) with respect to discrete Lo norm.

3.1. Stability of the ADI-QSC-L1 scheme
We define

Vi = {v = (viy) € READXEAD L (5, 5) e o},
Vi={veV,: 0,0,v,=0,0,v,;=0,k=0,N,+1, £=0,N,+1, (i,j) €w}.

For any w, v € V?, define the discrete inner products and norms

Ny Nl/
(w,v) = AzAy Y > w;j vij, o] := (v,0),
i=1 j=1
Nw+1 Ny
(0w, 0,v), == AxAy Z Z(&wwi,j)(éxvi,j), 16,02 := (0,0, 8,0).,
i=1 j=1

where 6,v; ; = (v;; — vi—1,;)/Az, and similarly the discrete inner product (§,w, d,v),
and norm |d,v||, can also be defined. We further define
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Nac+1 Ny+1
(820yw, 620,0)ry 1= AxAy Y > (8:8,w;5)(8:0,vi;),

=1 j=1
||5m‘sy'v||3:y 1= (0200, 0,0V)zy.

The following lemmas play important roles in the stability analysis of the ADI-QSC-
L1 scheme.

Lemma 3.1. For any v € V9, we have

(M20yv,0,0,v) = —(0,0,v,0,0,0,v),,
(ny0,v,0,0,v) = —(6,0,v,0,60,0,v),.

Proof. We only prove the first conclusion, as the second one is a similar result along
the y-direction. According to the definitions of the operators n,. and 8., we have

Nac Ny
(260, 0,0,0) = Ay > Y " (6:0,vi11,) — 8:0,;5)(020yvi ;).

i=1 j=1
Noting that
0.0,v0,; = 0:0,vN, 41,5 = 0,

and using summation by parts, we get

Nz+1 Nl/
(77x9y117 axeyv) = —AzAy Z Z(‘saﬁeyvi,j)((sarea:ayvi,j) - _<5x0y'vv 5x0x0y'v>x
i=1 j=1
This completes the proof. O

Lemma 3.2. For any v € VY, we have
1
(0:0:0,v,0.0,v), > ZH‘sxey’UHcha
1
(0,0.0,v,6,6,v), > ZH‘sye:v'UHgQ;-
Proof. We only prove the first conclusion, as the second one can be proved similarly.

Following the homogeneous boundary conditions, we derive

Nz“l’l Ny
(0:020,v,8,0,v) = AzAy > (8,040, ;)(8,0,0,v;;) = I+ I+ III, (3.1)
i=1 j=1

where

Nz Ny

AxA
1.8 Y Z Z(émeyvi,j)(éxeyvi,u + 65103/2}2‘,]' + 6;,303/1)”17]'),
i—2 j—1

I =
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Ay &
Yy
=3 Z((sx@yvl,j)(@yvzvj + 26yv1,; — 30yv,5),

A
111 = y Z 6 OyszJrl J)(30ysz+1] 29@/sz,] OyerLj).
j=1

First, using ab > (—1/2)(a? + b?) we see

AxAy No Yy 9
ZZ -5 5 2Oy vi- 1]) +5(8, Gva) - (5 Oyvit1,;)

=2 j=1

Second, for the homogeneous boundary conditions 6,0,vy; = 0 for j = 1,...,N,, we
have
Oyv1,; = —0yv0,5, (3.2)

which leads to

A A
II = i Z (5 Oyvl ]) [6 Oyvgj 36 Oyv1 J]
7j=1
N,
AzAy <= [5
> 3 Zl [5(5191;”1,]) (5 6yv2,5) ] )
]:

and similarly, because of 8,0, vy, +1; = 0, the third term is bounded below as

AxAy 5 1
117 > 3 Z [5(5x0yUNx+1,j)2 - 5(61'0311)Nx7j)2:| :

=1
Thus, inserting the above estimates into (3.1), we immediately get

<609'v60'v>

_ AzA
- yz [ (8,0,v15) +4Z 8:0,0i )% + 2(8,0,0N, 11;) ]

=2

= ZH‘smeyUHx,
which proves the first conclusion of Lemma 3.2. O

Lemma 3.3. For any v € V?, we have

H(s 4 UH:vy — (naﬁnyv 0 ay”) H(s Y vay
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Proof. Using summation by parts for the indices j and i, respectively, we have
(MeMyv, 0,0,v) = —(8,1yv, 0,0,0,v), = (0,0,V,6,0,0,0,v),,.
Then, according to the definition of inner product, we see

(0,040, 0,6,0,0,v),,

Nz+1 Ny+1
=AzAy Y > (0.0,8,6,v;;)(8:0,v; ;)
=1 j—=1
Ny
= AzAy | (020,0:0,011)(8:0,01.1) + > _(020,8,8,015)(8.6,v1 ;)
=2
Ny
+ (exeyéxéyvl,Nerl)(5mayv1,Ny+1) + Z(exeyéxayvi,l)(amayvi,l)
=2
Nz Ny NZ
+ D> (0:6,8:8,0:3)(8:0,0:) + Y (0:60,8.8,vi,n,+1)(6:8,0i N, +1)
=2 j=2 i=2
Ny
+ (oxeyéxéyUNerl,l)(amayszJrl,l) + Z(emeyéxéyszJrl,j)(6:v6yUNz+1,j)
j=2
9
+ (ozveyé:céyUNerl,Nerl)(5maysz+1,Ny+1) = Z P;. (3.3)
=1

For the term P; in (3.3), since 6,0,v; o = 0fori=0,1,..., N, + 1, we have

1 1
0.0,0,0,v11 = mexey(vl,l —Up1 — V1,0 + V0o0) = moxeyvl,la

and thus by (3.2), we see
7)1 = (éméyvl,l)(exeyvl,l)

1
= §(5$5y1)171)[0y?}271 — 0y7)171 + 3(0y?)171 — 9y1)071)]

Ax

= ?(5$5y?)171)[5x0y1)271 + 3(535931?}171]. (34)

Furthermore, taking the same routine for the operator 8, in (3.4), we can obtain

_ AzAy

P1 64

(8:0,011)[028,v2.2 + 38,0,02.1 + 30,8,01.2 + 98,8,v1.1],

from which and using the inequality ab > (—1/2)(a® + b?), we have

AxAy

>
Pz =58

[11(5905317)1,1)2 — ((535(5311)272)2 — 3(59653,0271)2 — 3((535(5311)172)2] .
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Similarly, for the terms P3, P; and Py we have

AzA

Ps = 128y [11(5a:5y”1,Ny+1)2 - (5x5y?127Ny)2 - 3(5x5yv2,Ny+1)2 — ?)((535(53/1)17]\711)2]7
AzA

Fr = 128y [11(020,0n,+1,1)% = (8:0,0N,,2)% = (820, 0n, +1,2)* — 3(8:0,un,,1)%],
AxA

Po 13328?/ [11(800,0n,+1.8,+1)° = (820,0N,,3,) = 3(828yvN,+1,,)?

- 3(6$6yUNx7Ny+1)2:| .

For the term P,, by the homogeneous boundary conditions, we have

Gxeyéxdyvl,j = Aié) o 6yvl7j
SA 5 (7] (1)27] +6U1] —i—voj)

1
= Sag0utylvzs — vij +3(v1 — voy)]
1
= 30y0y0a(v2j + 3v1,5)
1
= 51020y (V21 + 6vz;j +v251 + 3urjo1 + 18v15 + 3v1,541)

forj=2,...,N,. Then,

AxAy
>
P22 =05

Z 122(8,8,01,)% = 3(8.0,v1,51)? — 3(8,:8,01,541)°

— (820v2,j-1)> — 6(620,v25)° — (8:8,v2,j+1)°

Similarly, we have

A:UAy
- 128 Z {22 (020, vi,1)” = 3(5355311)2‘_171)2 - 3(5m5yvi+1,1)2

— (8:0,vi-12)* — 6(8:8,v;2) — (5x5yvi+1,2)2}7

AxAy
Pe = 128 Z [22 (0:0yvi NyH) 3(59359”2‘*17%“)2 - 3(6$6yvi+1,Ny+1)2

- (6163/1}2;1,]\@) - 6(6mayvi,Ny)2 - (6:v6yvi+1,Ny)2]a

A:UA
Z J Z [22 (5 (5 szJrl J) - 3((51(53/’[)]\[14&,]‘,1)2 - 3(6:1:63/sz+1,]'+1)2

Ps

— (820,vN,,j-1)° — 6(8.0,vn, ;)° — (5m5yva,j+1)2}-
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Finally, for the term Ps, we have for i =2,...,N,, j =2,..., Ny,

1
— 8,0, (vi—1,j—1 + 6V, j—1 + Vit1,j—1 + 6v;_1; + 360 ;

Oxeyéxéyvm == 64

+ 60115 + Vie14+1 + 605 j41 + Vig14+1),

and thus

Ny Ny

AxA
= 71928 ZZ [44 8:6,0i ) — (8:0,vi—1-1)% — 6(8:0,v; ;-1)°

=2 j=2

- (5x5yvi+1,j—1)2 - 6(596531”2‘—171’)2 - 6(5x5yvi+1,j)2
- (5x5yvi—17j+1)2 - 6(596511”2}1’4-1)2 - (5w5yvi+17j+1)2]-
Now, inserting the lower-bound estimates of P; — Py into (3.3), we have

(040,v, 5x5y9m0y”>my

AxAy N Narl Na
Z <% 82 (8.6,vi1)” + 16 2; (8,0, v;2) +16§ (80,0 N, )
Ny Ny
+8§:661MWH +8) (620,01)> + 16> _(8,0,v2,5)°
=2 j=2 Jj=3
Ny—1 Ny
+16 ) (826,0n, 5)° + 8 (620,0n,11,)° + 4(628,v1,1)°
j=2 j=2
48,0, 0N, 4+11)° + 4(8:8N, 11,8, +1)% + 4(8:0,01 v, 11)?
Ny—1Ny—1
+ 36 Z Z (éméyvm)Q
i=3 j=3
1
2_H6 4 v”xy’

which proves the left part of the conclusion.
On the other hand, by a similar routine we can derive the upper-bound of P; (i =
1,...,9), and therefore

(828,,8,0,0,0,v),,

AzAy Ve No Ny
< 128 |:46 Z(éméyv@l)Q + 46 Z(amayvi,Nerl)Q + 46 Z(éwéyvl,j)Q
1=2 =2 j=2

Ny

+ 46 Z(ézvéyszJrl,j)Q + 23((51(%’01,1)2 + 23((516yUN1+171)2
=2
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+ 23((535(5311)17]\71/4_1)2 + 23(5x5yUNw+1,Ny+1)2 + 92 Z Z(6$5yvi7j)2

Nac Ny :|
i=2 j=2

<—W5Mm,

which proves the right part of the conclusion. O

With the help of the above preliminary lemmas, the stability of the ADI-QSC-L1
scheme is included in the following theorem.

Theorem 3.1 (Stability). Let {c}';|(i,j) € @,0 < n < N} be the solution of the ADI-
QSC-L1 scheme (2.19). Then, we have

HawayanZ <Q [HeﬂcayCOHQ + TledZH‘sm‘schHiy + TZ kaHQ

where () is a positive constant.

Proof. We first rewrite (2.19) into the following equivalent form:

dydsy did
<snemey — dim,0, — 28,1, + nxny> = %mny Pt s Fly. (3.5)

n

Then, multiplying both sides of (3.5) by AxzAy6,0,c!
to N, and for j from 1 to N,, we obtain

i;» and summing up for ¢ from 1

50 |10:0,c"|* + d1d2 (ngmyc 0.0,c")
n—1
(9 0,c",0,0,c" Firal k1< = o) (0.6,¢",0,8,c")
Ab;" 0 g g o . o
Tt ay (Oo0ve’ 020ye”) + i (m:6,c",0:0,e”) + d (Bamyc”, 0:0yc”)
L (mamyc™ ', 0,0,c") + (£, 0,0,c") . (3.6)

n

For the fourth and fifth terms on the right-hand side of (3.6), by using Lemmas 3.1-3.2,
we have

di (n.0,c",0,0,c") + da (0,myc",0,0,c")
= —dy (6,0,6,c",0,0,c"), —d2(6,0.0,c", 6y0xc">y

d; n da n
_Z”‘swayc [ ZH‘Syaxc H; < 0. (3.7)
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Notice that (2.11) implies that 6, is a symmetric positive definite operator. Then,
there exists an operator ¥, satisfying 8, = 92, and similarly, there is also an operator
9, satisfying 6, = 192. Similar to the proof of Lemma 3.1, we have

(mamye™ ™, 0,0,c") = (8:0,9,9,c" ", 8,0,9,9,c") . (3.8)
Inserting (3.7)-(3.8) into (3.6), and by Cauchy-Schwarz inequality we get
n 1d2 n
SnHOIch H2 Hmy
1 n— n
> 5o [”99[19110 1H2 + Haxeyc | ]
n—1
+ g O (B~ 0 100,64 + 0.6,"
k=1
)‘bgn) 012 ni( 2 1 ni2 n|2
+m [16:6,¢[|* + (6.6, c"|*] t5 (1% + 16:0,c™ (7]
d1d2 n— n
+ - [||5 8y 0.0, "2, + [16.6,9,9,¢"|3,]
1 A mm
< - n—12 n) _ (n k2
= QT“axayc H + 2F(1 +an) ;(bkurl b )Haxeyc H
A d1d2 o
mwm@ycw 1Hmy
1 n Sn + n dldg n
+5lf 1% + H2 [

where the monotonicity of the coefficients {b/,C } in (2.5) has been used. We further
have

n d1d2 n
Thin[020,¢"|* + 7 [E»
MO m
< 10,0, 2P+ ——— b —b" 0,0,c"|?
< (|00, ||" + T(1+ an) k:1( k41 )H ye ||
Arb{™ d1d2
0$0 012 n—1 n|2 3
+7m+an)!! ye |l 12, + TIF 17, (3.9

where, for 7 sufficiently small, y,, := s, —1 > 0. Furthermore, note that 1/s,, < 7 < 27,
and thus for 7 sufficiently small,
1 1
S cr<or, o1y <140m (3.10)
Hn Hn Hn
We further denote
1AGEY b)) 1 A2 = 20m)ram

o T T am) 1 T(tam)
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Next, we start from (3.9) to prove the following induction result:

d
10,0,c"? + D

118:8,0:0y¢" 7, < @, (3.11)

"Iz

where

D0 = |0,0,c"||* + 7°d1da|6,6,9,9,"|I2,,
k
OF = (14 Qor)" @+ 7> (1+ Q)" "IFI?, k>1,
1=1
and @y > 2 is some positive constant to be specified.
First, for n = 1, (3.9) reduces to

2 4 G

16.6,c! —Ha §,9,9,¢ Hﬁy

51 d1d2 1
< —16.0,c"|* + —||6 8,0,9,c° 2, + —IIFHII°
M1 H1

< (1+27)9° +THf !!2,

which satisfies (3.11) for n = 1.
Second, we assume that (3.11) holds for all n < m — 1. By taking n = m in (3.9)
we see

dy1dy

Tim||020,¢™ || + —Ha 8,0,9,¢™|2,
d d
< 70|00, 2 + 7 ﬁud 8,0,9,¢" 2,
m—2 (
bm 0,0,c"|>
1+am kZ - ) 110:0,¢
)‘Tbg ") 012 2
—1/0,0 mye 3.12
Note that
(2 . 2am—1)7-am—1 /(2 — QCVm)TCVm _ 2 — 2m—1 . F(l + Oém) . FOm—1—Qm (3 13)
(14 am-1) I'(1+ am) 2—2vm  D(14 am-1) ’ '

and for enough small 7, we have

20m /
s =27 =exp (o/(€)TIn2) <1+ Qu7
2 — 20m-1 220
— <
2-20m 72— (14 Qq7)2%m-1
90m—1
=14 Ql T < 1+ Q2T7

2= (1+ Qy7)20m—1
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L tam) o D0+ a(6))d ()
P(l —|—am_1) F(1+am_1)

Tam— 1—0m Tfa/ (53)7—

T <1+ Q37,
— exp(—a/(£)r I 7)
=exp (— /(&) In7) < 1+ Qur' ™,

where &; € (t,,-1,tr) and @Q; are positive constants for 1 < ¢ < 4. Thus, inserting these
estimates into (3.13), we get

(2 _ 2a’m71)7—0¢m71
F(l + Oémfl)

(2 — 20m )T
Il+ap) ’

< (1+2Qur'™™)

and further we have

Om—1
Om

am \ ~Qm,  9Qm\0m —1
< {; L +2QW*>M} {1 M}

TA+am) | |7 T +am)

Lo A2 20m)ram ] [T \(2 - 20m)pem ] T
<14 |2Qurt2_— 2 4 =
=0 [ Qur (1 + ) ] L’ * (1 4 )
A(2 — 20m)
L1+ am)

where in the last step we have used the fact that «,, > «,, and the constant Qs is
chosen such that

<1+ <2Q4 TO"”_O‘*> T <145,

A(2 — 20m)
T(1 + am)

Qum, — Qs

Qs > 2Q4

Moreover, we can prove that

Sm

and thus, for 7 sufficiently small, there exists a positive constant (s > 2Q)5, such that

< (14 Qe1)

SmOm Sm—10m—1

With the above preliminary conclusions, we insert the induction hypothesis (3.11) into
(3.12) to see

dyds

Thiml| 020, ||* + 7 18:8,0.9 <2,
< 7om(1+ QeT) [Heggeycm—l\\? - %H&xdyﬁxﬁycm_l\\iy
MRS b oAb 0r2 L e
(i am) & (01 = ) 18:6,c" 1 4+ o 1028, + 7
< 70w (1 + Qo) @™ + mf BT — b)) @

1 + ) —
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Arby™
0339 0112 m| 2
< (14 Qe7) + < 2(b(m m)+L§M) oMl 47| 2
S|\ 7ol + @67 1+am a ka1 T+ ) T
< T (14 Qe7) D™ 1+T||f’”|| : (3.14)

Then, divided by 7., on both sides of (3.14), together with the inequalities in (3.10)
and choosing QQp > 2(Q¢ + 2) such that

(1+27’)(1+Q67’)§1+Q07,

we get

dida

m

16:6,c™|* +

113,09 y€2, < (1+Qor) @™ + 7| f7? = o™,

which completes the induction (3.11) for n = m.
Finally, note that (1 + Qq7)* in (3.11) is always bounded from up for sufficiently
small 7, this together with (3.8) and Lemma 3.3 imply the conclusion. O

3.2. Convergence of the ADI-QSC-L1 scheme

In this subsection, we consider the convergence of the proposed ADI-QSC-L1 sche-
me (2.19) for the approximation of (2.1).

Lemma 3.4 ([29]). Let A, = {X, ;} be the collocation points described in (2.9). Let
91(X) € My ® M, be the quadratic spline interpolation of function g(X), satisfying

91(Xiz) = 9(Xij), (i,j) € w. (3.15)
Then, for g(X) € C4(Q), the interpolation errors g; — g can be bounded by

10291 — 9)llsc = O(h), 10y (91 — 9)lloo = O(R?),
|02 (g1 — 9)(&7, )| = OR?), Dy (g1 — 9)(-,€Y)| = O(h?)

fori=0,1,...,Ny+1,j=01,...,N, + 1.

Theorem 3.2 (Convergence). Let u" = {u};} and U" = {U};}, where u}', is the exact
solution of model (2.1) at (X; j,t,), and U" U™(X;,;)in theform (2.8) is the solution
of the ADI-QSC-L1 scheme (2.19). Then, we have

lu" ~ U™ <Q (7 +1?),

where @) is a positive constant independent of h and 7.
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Proof. Let u}(X) € M,®M, be the quadratic spline interpolation of «" (X') defined
by (3.15). Then, it can be expressed as

Nw+1 Ny+1

u(X) =Y > &bi(x)é;(y). (3.16)

=0 j=0
Besides, at collocation points, we have
(U — ") (Xig) = (U" =) (Xiy) (ir]) € 6. (3.17)

Similar as the construction process of the ADI-QSC-L1 method (2.19), it can be veri-
fied that the interpolation function u}(X) represented in (3.16) satisfies the following
equation:

did
6020, + A" 0,0, + — —namy
didy .
= dlnxeyézj + d20$nyézj + S—nxnyczj ! + Z'T’Lj + ng, (Z,]) € w, (3.18)
n
ozveyéﬁj = szrfja (Z,j) € Ow,
axeyc?hj = u§7j7 (17]) € (;J,

where
g1y =0 (uf — u")(Xij) = rim + AT (uf — u")(Xig) — Aran
= 105 (uf — u") (Xi ) — d20yy (uf — u™) (Xi5)
N dyds

—— Oayy(uf — u?_l)(Xm),
n

and 71, and ry, are defined in (2.3)-(2.4), respectively. It is proved in [50] that
owu(X,-) € C[0,T], this together with s, = O(7~!) and Lemma 3.4 show that

\ggj] = |rin| + A|ron| +O (7'2 + h2) , (i,4) e w. (3.19)

Lete, == ¢} — ;. Then, subtracting (2.19) from (3.18) we obtain the following

error equation:

did
0,00y} + AO1=0,0,} + ——m.mye

didy -
ZMm%%ﬁ%ﬁmw%+iimm#ﬁw% (4,7) € w,
n
0.0,¢r'; = 0, (4,7
6.0,¢); =0, (i,7) € @,

which can be rewritten as

dy do dida _ .
(9”5 - s_”x> (“’y - ;%) €y =~z MMyl +Hij (i,)) €w,
n

Oxeye?,j = 0’ (Z,]) e aw’ (3.20)

Oxeyegj == 0, (Z’]) € (:},
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where
A nz_l m ) 1
n n n 0 n
Hid SpT —0 Oy z,j P(l T Oén) (karl — b )9 Oye” + b 910y6i7j + ;g@j'

k=1

With a similar treatment as the proof of Theorem 3.1 for (3.20), we obtain

U™ — uf||* = !!996”\\2

<27 Z(l +Qor)" ! (g',6.6,€")
=1

<2Q7 Y _lg'] 16.6,€'l. (3.21)
=1

For simplicity, denote E" := |0,60,e"|| for n = 1,...,N;, and assume that there exist
ang € [1, N¢] such that £ := max;<,<n, £". Then, we obtain from (3.21) that

ng
U™ — uf|]* = (E")* < (E")” = [|0:0,e™[* < 2Q7E™ Y _|g'l,
=1

which further implies that
no N
U™ —up| = E" < B <2Qr Y gl <207y gl (3.22)
=1 =1
Then, by (3.19) and the estimates of r; ,, and 2, in (2.6)-(2.7), if «(0) = 1, we have
Ny Nt
Y gl QY (r+h%) =0 (r+1%). (3.23)
=1 =1
Otherwise,

Ny Ny
P3 lgl < Qr S (P ONPOT Nt N 4 12 4 p2)

1
<Qr / (t7200) 1729 gt + Q(r? + h?) = O(7 + h?). (3.24)
0
Inserting (3.23)-(3.24) into (3.22) and using (3.17) finishes the proof. O

4. Efficient implementation of the ADI-QSC-L1 method

We can see that the implementation of the ADI-QSC-L1 method (2.14)-(2.18) at
the current time level ¢, requires all the approximations at previous time levels, and
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thus a huge memory requirement of order O(N, N, N;) and computational cost of order
O(N;N,N?) are still needed. In this section, we shall apply the ESA technique, origi-
nally proposed in [45] for variable-order Caputo fractional derivative, to the proposed
ADI-QSC-L1 method, which leads to a fast version ADI method, say the ADI-QSC-FL1
method.

At the first time level ¢;, the ADI-QSC-FL1 scheme is exactly the same as the ADI-
QSC-L1 scheme (2.14)-(2.18). For 2 < n < N, we have the following lemma for the
fast approximation of {D} ~“"w(t,).

Lemma 4.1 ([45]). For 2 < n < N; and a given absolute tolerance error ¢, there exist
a constant k, integers N and N such that

27
e log 3 + a*log(cos1)~1 +loge~!
N Foge +logT'(1 — an)l

)

KOs,

N {log N; +logloge ! + log v, + 2_1J
P 9y

and the variable-order Caputo fractional derivative OGDtl’a”w(tn) can be fast evaluated as

1 Tozn—l N TOén—l
AT w(ty) = W, —_— tn) — w(tn— 1
Frlin) = gy 3 endWddwl + o (el —wey) @D
=N+1
with
|61 w(t,) — AL w(t,)] <, (4.2)
where ,
refion I’
wn,z—mv Or=¢€
and W, ,[w] can be computed recursively via
(tn—tp_1) (tn—tpn_1) (tn—tp_2)
Wi e[w] e Wn_17g[w]—|—T(6_Q£ T T 2)

w(tn_l) — w(tn_g)
0¢(tn—1 —th—2)

(4.3)

forn=23,..., Ny, with Wi y[w] = 0.

Remark 4.1. In contrast to (2.4) for the approximations of {{D} *"w(t,)}.", which
require O(N;) memory and O(N?) computational cost, the total memory require-
ment and computational cost for (4.1) respectively reduce to order O(log? N;) and
O(Ny log? N;). This is because that the number of exponentials in (4.1), say N — N,

is only of order O(log? N;), see Ref. [45]. Thus, the coefficients {z,unvg}eﬁzﬂJrl and
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{Wie[w]} y., contribute to the major storage, while (4.3) shows that at each time
step one can update the quantity W, , recursively in only O(1) computational work for
each fixed i. Therefore, the computational cost for (4.1) is of order (9(log2 N) for each
time level, which amounts for a total computational cost of order O(N; log? N;) for the
approximations {Al=%w(t,,)} at all time levels.

Now, inserting the expression (4.1) with w(t,) and W, ,|w] replaced by vectors
c" = {c};} and W, s[c] into the QSC-L1 scheme (2.10a), we obtain

[snaxay —din.0, — d29$77y} i

N

S w0, (Wiile))ij + £1, (4.4)
(=N+1

fy—l B )\Tanfl

= 5,0,0,c

where the matrix W, /[c] is recursively given by (4.3) with W 4[c] = 0.

Then, by respectively adding the terms (d;dy/ sn)nxnycgf ; and (dydy/ Sn)ﬂmnyCZ;1 to
left and right side of (4.4), and dividing the resulting equation by s,,, we obtain the fast
version ADI-QSC-FL1 scheme

d d did
Omoy - _177:1:03/ - _291773/ + %nmny} C?,j
Sp Sp 54
dyds . . oarent N 1
= 3 MaMyCly + 00, — > wn 00y (Wi gle))ij + —f7;  (4.5)
s2 spI'(a) Pt Sn,

for 2 < n < N;. In practical implementation, the ADI-QSC-FL1 scheme (4.5) reads as
follows:

Step 1. Foreach j =1,2,..., N,, solve the following linear systems along z-direction:

(0. = (6, 2y Vo,
xCoj = - ny zCp ;s

Y Sp,

1 s didy -1 -1
(91 - S_dlnx> Cij = ?nxnyczj‘ + exeyCZj

N (4.6)
1 A\, Ton 1 1 ,
_gme; W 00:0,(W,, o[c])ij + gfgjj, i=1,2,...,N,,
=N+1
" da n
0$CN90+17j =0y, — —mny Ochw—H,j’
\ Sn

where {6,c( ;} and {0,c}, ., ;} for j =0,1,..., N, + 1 are obtained similarly as what

we did in (2.15).

Step 2. Foreachi=1,2,..., N,, solve the following linear systems along y-direction:

d ‘
(6= 2m) ety =iy G=1.23, S
n
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with boundary equations {6,cf,} and {6,c} .} determined similarly as (2.17). Mo-
reover, {c;} and {c},_,, ;} are also given by (2.18).

Remark 4.2. As seen in the ADI-QSC-FL1 scheme (4.5), the evaluation of the variable-
order Caputo fractional derivative at the current time level only depends on the ap-
proximations at the current time interval [¢,_1,¢,] and its previous historical infor-
mation that stored via the matrix W, /[c| for each ¢. Thus, the major memory re-
quirement for the ADI-QSC-FL1 scheme (4.6)-(4.7) is the storage of such matrices for
all = N + 1 to N. Therefore, the total memory requirement for the ADI-QSC-FL1
scheme is reduced to O(N,N, log® N;) compared with the ADI-QSC-L1 scheme. Be-
sides, note that at each time level, the ESA technique is only applied in the first step,
which accounts for the computational cost of order O(N,N, log® N;) as discussed in
Remark 4.1, and meanwhile, only some linear tri-diagonal systems are solved in both
steps, which can be solved by the Thomas algorithm in only O(N,NV,) computational
complexity. Therefore, the total computational cost for the ADI-QSC-FL1 scheme is
reduced to O(N, N, N; log? Ny). It is clear that both the memory requirement and com-
putational cost are much less than those for the ADI-QSC-L1 scheme developed in
Section 2, especially for long time or small time stepsize modeling.

5. Numerical experiments

In this section, three different examples in two and three space dimensions are
tested to verify the convergence orders of the ADI-QSC-L1 method and to show the
efficiency of the fast version ADI-QSC-FL1 method. All programs are run on a Lenovo
desktop with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz with Matlab R2017b.

Example 5.1. For the first example, we consider the two-dimensional model (2.1) on
the space-time domain [0,1]% x [0, 1], where the coefficients A\ = d; = dy = 1 and
the source function f(X,t) is chosen such that the true solution is u(X,t) = (1 +
t2) cos(z) cos(y).

In order to investigate the convergence orders of the developed methods, we con-
sider the following three different types of variable-order a(t), i.e.:

aq (t) = cos(0.47t),
az(t) = 0.5(1 4 sin(1.37t)),

sin 2 (1 — ¢
as(t) = 0.4+ 0.6 |1 — ¢ — 22210
27
We first fix N, = N, = 256 to observe the temporal convergence orders of ADI-

QSC-L1 method. By doubling the values of N; repeatedly from 32 to 256, we show
the corresponding errors and convergence orders for different «(¢) in Table 1. Next,
by choosing N; = 131072 large enough, we test the spatial convergence orders in Ta-
ble 2. We can see that the convergence orders displayed in Tables 1-2 fit the theoretical
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Table 1: Errors and temporal convergence orders of the ADI-QSC-L1 method for Example 5.1.

Oél(ﬁ) [6%) (t) Qa3 (t)
Ny Error Order | N Error Order | N Error Order
32 | 1.03e-03 — 32 | 1.28e-03 — 32 | 1.00e-03 —

64 | 5.09e-04 1.02 64 | 6.26e-04 1.03 64 | 4.97e-04 1.01
128 | 2.51e-04 1.02 128 | 3.06e-04 1.03 128 | 2.46e-04 1.02
256 | 1.24e-04 1.02 | 256 | 1.50e-04 1.03 | 256 | 1.21e-04 1.02
~ 1.00 ~ 1.00 ~ 1.00

Table 2: Errors and spatial convergence orders of the ADI-QSC-L1 method for Example 5.1.

Oél(ﬁ) [6%) (t) Qa3 (t)
N Error Order Error Order Error Order
8 6.99e-05 — 7.00e-05 — 6.99e-05 —

16 | 1.76e-05 1.99 1.76e-05 1.99 1.76e-05 1.99
32 | 4.25e-06 | 2.05 | 4.23e-06 | 2.06 | 4.25e-06 | 2.05
64 | 8.93e-07 | 2.25 | 8.67e-07 | 2.29 | 8.94e-07 | 2.25
~ 2.00 ~ 2.00 ~ 2.00

Table 3: Comparisons of results obtained by different methods for Example 5.1.

QSC-L1 ADI-QSC-L1 ADI-QSC-FL1

N N, Error Time Error Time | Negp Error Time
32 256 | 1.18e-04 | 1.17s | 1.17e-04 | 0.27 s 41 1.20e-04 | 0.36s
64 512 | 5.92e-05 10s 5.90e-05 | 1.58s 51 6.14e-05 | 1.03 s
128 | 1024 | 2.96e-05 90 s 2.95e-05 18 s 63 3.17e-05 8s
256 | 2048 | 1.47e-05 781 s 1.47e-05 | 195s 75 1.71e-05 | 58s
512 | 4096 | 7.35e-06 | 13589 s | 7.34e-06 | 7406 s 89 9.58e-06 | 960 s

second-order spatial accuracy and first-order temporal accuracy very well. Finally, in
order to show the strong performance of the ADI-QSC-FL1 method using the ESA tech-
nique, we run the direct QSC-L1 method (2.10), the ADI-QSC-L1 method (2.14)-(2.18)
and the ADI-QSC-FL1 method (4.6)-(4.7) for comparisons. Numerical results including
errors and CPU times for «y(t) are displayed in Table 3, where N,,, = N — N for the
ESA technique. We can see that all methods generate the similar error results, while
the ADI approach consumes much less CPU running time. Moreover, the ADI-QSC-
FL1 method, which combines the ADI and ESA techniques, is able to further improve
the computational efficiency greatly. For example, with N, = N, = N = 512 and
N; = 4096, all three methods yield numerical errors about magnitude 109, but the
running times have been reduced from 13589 seconds (= 3 hours 46 minutes 29 sec-
onds) to 7406 seconds (2 hours 3 minutes 26 seconds) to 960 seconds (16 minutes) for
the direct QSC-L1 method, the ADI-QSC-L1 method and the ADI-QSC-FL1 method.
Thus, the developed fast version ADI method shows strong potential in large-scale and
long time modeling and simulations.
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Example 5.2. In the second example, we consider a three-dimensional model (2.1) on
the space-time domain [0, 1]? x [0, 1], where the coefficients A = d; = dy = d3 = 1 and
f(X,t) is chosen such that the true smooth solution is

u(X,t) = (14 %) cos(x) cos(y) cos(z).

The same variable-order functions «(t) as those in Example 5.1 are employed.

In this situation, the QSC schemes for the computation of {c}’; .} at time level ¢,
can be developed similarly, but are more complicated. For example, the ADI-QSC-L1
scheme reads in the following three sub-steps:

Step 1. Foreachj=1,2,...,N,, k=1,2,..., N, solve a series of (N, +2)-by-(N,+2)
linear algebra systems along z-direction

. dp d3 n
0x007j7k = <0y - S_ny> (02 - S_nz> 01‘007]‘7]@

n n

d - .
(9 1,%) G =Fly, =12, N, (5.1)

Y, — —
Sn

* d2 d3
exCNZH’j’k N <0y - gﬂy) <0Z - ;m) 0$C?Vz+1,j7k,

where {0,cj ; ,} and {6.c}, ., ;,} are respectively solved at boundaries = z,, and
x = xR by
ayez(eﬂ»‘cg,j,k) = Sp(g(q):v ;’lv 51’37 tn)?
eyez(emc?vw-i—l,j,k;) = gp(glgi/'erl? ;J’gli’tn)

forj=0,1,...,Ny+1land k=0,1,...,N, + 1.

(5.2)

Step 2. Foreachi=1,2,...,N,,k=1,2,..., N, solve a series of (N, +2)-by-(N,+2)
linear algebra systems along y-direction

() ds
ayci,o,k = <9z - ;’k> ayCZo,kv
d2 *k % s
0, — M) Gk = G = 1,2,..., Ny, (5.3)
n
. ds
ayci,Ny-i-l,k = <9z - S—m) GyC?,Ny—f—le

n

where {6,c], .} and {0,c} N, 41, are respectively solved at boundaries y = y;, and
Yy =yrby
0$02(0yc1i1,0,k) = 80(6;1:7 E(Z)lv Eliv tn)7

OmOZ(OyC?,Ny-i-l,k) = go(ﬁf,g?vﬁl,ﬁi,tn)

fori=0,1,...,N,+1land k=0,1,...,N, + 1.

5.4
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Step 3. Foreachi=1,2,...,N,,j=1,2,...,N,, solve a series of (N, +2)-by-(N,+2)
linear algebra systems along z-direction

d3
<0Z — S—’Ih) ch7k' = C;T;,k;? k= 1, 2, . aNZ (5.5)
n
with boundary equations 6.c}'; , and 6.c}'; y ., determined at boundaries z = z;, and

z = zp by
eﬂﬁay(ezc?,j,O) = Sp(ggcv ?768715”)7
eway(ezc?,j,Nerl) = (&, ;{7§]ZVZ+17tn)
fori=0,1,...,N,+1land j =0,1,...,N, + 1.

Finally, using the data {0,cj ; ,} and {0,c}, ., ;,} determined by (5.2), the quan-
tities {cg ; .} and {c}, ,, ;} corresponding to the boundaries x = z, and x = zp are
given by

(5.6)

ngj7k = 20xcgyj7k B C"fyj7k7 anZ+17]7k = 20$anZ+17]7k - anIJyk (5'7)
forj =1,...,Nyand k = 1,..., N.. Likewise, the quantities {c', ,} and {c?NyJr1 ot
corresponding to the boundaries y = y;, and y = yr are given by

Crok = 260yClok — Gk Cing+1k = 20yCiN, 41k — CiN, & (5.8)
fori=1,...,Nyandk=1,...,N,.
At the four edges (&7, &7, 7)) for i = {0, N, + 1} and j = {0, N,, + 1}, we have

0.(0.0,c7; ) = p(&F, €4 & tn), k=0,1,... N, + 1. (5.9)

By solving the above four linear systems of order (N, + 2)-by-(V, + 2), we then obtain
the quantities at four corners

n _ n n n n
€0,0,k = 4‘9m9y00,0,k —Co,1,k — €10k — C1,1,k>

n _ n n n n
CON,+1,k = 402040 N, 1k — ST N, 41k — CON,E — CLN, ko (5.10)

n _ n n n n
CN,+1,0,k — 40$0yCNz+1,0,k —CN,,0k — CNy+1,1,k — CN,,1,k>
n _ n n n n
CNL+1,Ny+1,k = 40$0yCNz+1,Ny+1,k ~ CN,,Ny+1,k = CNy+1,Ny,k — CNy Ny k
fork=0,1,...,N, + 1.

In the following run of (5.1)-(5.10), we first fix N, = Ny, = N, = N = 64 and show
the corresponding errors and convergence orders for different «(t) in Table 4. Then,
we choose N; = 131072, and test the spatial convergence orders in Table 5. We can
also see that the convergence orders displayed in Tables 4-5 fit the theoretical second-
order spatial accuracy and first-order temporal accuracy pretty well. Besides, we also
compare the performance of the ADI-QSC-FL1 method with the ADI-QSC-L1 method
and the direct QSC-L1 method. Numerical results are presented in Table 6. It can be
seen that, the ADI strategy and the ESA acceleration technique are able to improve the
efficiency of the QSC-L1 method greatly.
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Table 4: Errors and temporal convergence orders of the ADI-QSC-L1 method for Example 5.2.

o (t) s (t) as(t)
Ny Error Order | N Error Order | N; Error Order
32 | 5.03e-04 - 32 | 6.56e-04 - 32 | 4.83e-04 -

64 | 2.58e-04 | 0.96 64 | 3.31e-04 | 0.99 64 | 2.49e-04 | 0.96
128 | 1.29e-04 1.00 128 | 1.64e-04 1.01 128 | 1.25e-04 | 0.99
256 | 6.39e-05 1.01 256 | 8.02e-05 1.03 256 | 6.22e-05 1.01
~ 1.00 ~ 1.00 ~ 1.00

Table 5: Errors and spatial convergence orders of the ADI-QSC-L1 method for Example 5.2.

o (t) s (t) as(t)
N Error Order Error Order Error Order
4 | 2.14e-04 — 2.14e-04 — 2.14e-04 —
8 | 5.63e-05 1.93 5.63e-05 1.93 5.63e-05 1.93

16 | 1.39e-05 | 2.02 1.38e-05 | 2.03 1.39e-05 | 2.02
32 | 3.13e-06 | 2.15 | 3.05e-06 | 2.18 | 3.13e-06 | 2.15
~ 2.00 ~ 2.00 ~ 2.00

Table 6: Comparisons of results obtained by different methods for Example 5.2 with a3 ().

QSC-L1 ADI-QSC-L1 ADI-QSC-FL1

N N; Error Time Error Time | Neap Error Time
16 | 512 | 1.74e-05 53s 1.71e-05 7s 18 1.75e-05 6s
32 | 1024 | 1.21e-05 | 2775s | 1.20e-05 89s 22 1.14e-05 65s
48 | 2048 | 6.18e-06 | 42859 s | 6.16e-06 | 604 s 26 | 5.90e-06 | 330s
64 | 4096 — — 2.96e-06 | 9050s | 31 3.31e-06 | 1567 s

Example 5.3. In the last example, we apply the developed fast version ADI method
for the dynamic evolution modeling of variable-order time-fractional Allen-Cahn equa-
tion [19]

Py — 2N+ ¢(¢2 —1) =0 in Qx (0,T] == (—1,1)2 x (0,200]  (5.11)

with the interface width ¢ = 0.02. The initial condition of (5.11) is chosen as

—03)2 4+ 42 —0.04 22402 0.04
¢(£,y,0)=—0.9tanh<(x 0.3)" +y” — 0.0 >tanh<(w+03) +y* - 0.0 >

9 9

2 _ 022 _ 2 2 _
=+ (y —0.3) 0.04> tanh <x + (y+0.3) 0.04> 7
£ £

X tanh (

and the fractional order is taken as

a(t) =0.5+0.4 [1 - ﬁ _ Siﬂ(%(l?; t/200))] _
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We use this model to simulate the merging of four-drops on the interface. In the
implementation of the ADI-QSC-L1 method, the nonlinear term is handled explicitly,
and a stabilized term is added from the second time instant, i.e.

2 o4
€ ) 1 S ) 717
<ax - 7’“) o = anny €+ Gl = —0(c =), n>2,
n

n

82
no__ JJL*
<0y — _rr’y> Ci,j = Ci,j s

where S is a user-defined stabilized constant, and

n—1
n _i (n) _ )y ,k (n) 0 _i n—1 n—1 2_ o n
R G R

In order to reduce the computational cost, we choose the following adaptive tem-
poral stepsize strategy:

Tpn+1 = Max {Tmim Tmax }
V1t nllo-¢™ |2
with Tin = 4.0 x 1073, Tmax = 1 and n = 1.9 x 10* [33]. The profiles of the phase
function ¢ obtained by direct QSC-L1 method and time adaptive ADI-QSC-L1 method
at time instants ¢ = 1, 50, 100, 200 are shown in Fig. 1 for N, = N, = 256, and the num-
ber of time steps and the CPU running time are shown in Table 7. It can be seen that
the four-drops gradually merge, and the time adaptive ADI-QSC-L1 method behaves
almost the same as the direct QSC-L1 method with 7 = 7,;,, while consume only the
almost same running time as that with 7 = 7ax.
Moreover, we also investigate the evolution of the Ginzburg-Landau free energy

Bl = [ (S1907+ 10— 67 doay.

In order to observe the relationship between the energy functional and the fractional
orders, we also introduce several different fractional orders

as(t) = 0.5,

137t
as(t) = 0.4 {1 + sin ( 2076 )} ,

t sin(2m(1 —¢/200

Table 7: The number of time steps and CPU time obtained by different methods for Example 5.3.

QSC-L1 with 7 =1 | QSC-L1 with 7 =4.0e-3 | Adaptive ADI-QSC-L1
# of steps 200 50000 1080
CPU time 17 s 36815 s 20s
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Dlﬂ

Figure 1: Solution snapshots of Example 5.3 at ¢ = 1,50, 100, 200 (from left to right), for direct method
with 7 = Tmax (top) and 7 = Tmin (middle), and time adaptlve ADI- QSC L1 method (bottom)
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Figure 2: Discrete energy functional generated by the time adaptive ADI-QSC-FL1 method for Example 5.3
with fractional orders «(t), aa(t), as(t), aa(t) (from left to right).

where «ay(t) is a constant order, and ay(¢) is a monotonically increasing function. The
discrete energy functionals obtained by the time adaptive ADI-QSC-FL1 method for
different fractional orders are shown in Fig. 2. We can see that generally it decays if the
variable fractional orders are constant or monotonic functions, such as «(t), as(t) and
ay(t). However, for the case as(t), though the discrete energy functional tends to be
stable, it is not always decreasing. There is still a big mathematical theory gap whether
the variable-order time-fractional Allen-Cahn equation is energy-dissipating or not.

6. Concluding remarks

In this paper, we first develop a QSC-L1 method for the two-dimensional variable-
order time-fractional mobile-immobile diffusion equation, and then by adding small
perturbation terms, an ADI-QSC-L1 method is further proposed. With some prepared
fundamental lemmas, we prove that the method is unconditionally stable and conver-
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gent with order O(r + h?) in discrete Ly norm, see Theorems 3.1-3.2. Then, combined
with the ESA technique, a fast version of the ADI-QSC-L1 method, named ADI-QSC-
FL1, is proposed to further improve the computational efficiency. The proposed method
is also applicable to model (2.1) in three space dimensions. Numerical examples are
provided to verify the theoretical findings. We show that the ADI strategy is able to
reduce the running time greatly, while preserves almost the same level of observing
errors, and the ESA acceleration technique can further improve the computational ef-
ficiency. Meanwhile, numerical experiments also show that the developed ADI-QSC
methods are applicable to model phase field equations. However, it is still not sure
whether there is an energy-dissipating law for the variable-order time-fractional Allen-
Cahn equation.
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