
Numer. Math. Theor. Meth. Appl. Vol. 18, No. 1, pp. 259-284

doi: 10.4208/nmtma.OA-2024-0069 February 2025

Two Dynamical Models Based on Projection

Operator for Solving the System of Absolute Value

Equations Associated with Second-Order Cone

Cairong Chen1, Dongmei Yu2,*, Deren Han3

and Changfeng Ma1

1 School of Mathematics and Statistics, FJKLMAA and Center for Applied

Mathematics of Fujian Province, Fujian Normal University, Fuzhou 350007,

P.R. China
2 Institute for Optimization and Decision Analytics, Liaoning Technical
University, Fuxin 123000, P.R. China
3 LMIB of the Ministry of Education, School of Mathematical Sciences, Beihang

University, Beijing 100191, P.R. China

Received 13 June 2024; Accepted (in revised version) 25 November 2024

Abstract. A new equivalent reformulation of the absolute value equations associ-
ated with second-order cone (SOCAVEs) is emphasised, from which two dynamical

models based on projection operator for solving SOCAVEs are constructed. Under

suitable conditions, it is proved that the equilibrium points of the dynamical sys-
tems exist and could be (globally) asymptotically stable. The effectiveness of the

proposed methods are illustrated by some numerical simulations.
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1. Introduction

The second-order cone (SOC) in R
n is defined by

Kn =
{

(x1, x2) ∈ R× R
n−1 : ‖x2‖ ≤ x1

}

,

where ‖·‖ denotes the Euclidean norm. If n = 1, let Kn represent the set of nonnegative

reals. Moreover, a general SOC K ⊂ R
n could be the Cartesian product of some SOCs

[10,11,15], i.e.

K = Kn1 × · · · × Knr
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with n1, · · · , nr, r ≥ 1 and n1 + · · · + nr = n. Without loss of generality, we focus on

the case that r = 1 because all the analysis can be carried over to the setting of r > 1
according to the property of the Cartesian product. For any x = (x1, x2) ∈ R × R

n−1

and y = (y1, y2) ∈ R× R
n−1, their Jordan product is defined as [10,11,15]

x ◦ y = (〈x, y〉, y1x2 + x1y2) ∈ R× R
n−1,

where 〈·, ·〉 denotes the Euclidean inner product in R
n. With this definition, the absolute

value vector |x| in SOC Kn is computed by

|x| =
√
x ◦ x. (1.1)

In this paper, we consider the problem of solving the absolute value equations asso-

ciated with SOC (SOCAVEs) of the form

Ax− |x| − b = 0 (1.2)

with A ∈ R
n×n and b ∈ R

n. Unless otherwise stated, throughout this paper, |x| is

defined as in (1.1). SOCAVEs (1.2) is a special case of the generalized absolute value

equations associated with SOC (SOCGAVEs)

Cx+D|x| − c = 0 (1.3)

with C,D ∈ R
m×n and c ∈ R

m. To the best of our knowledge, SOCGAVEs (1.3) was

formally introduced by Hu et al. [20] and further studied in [23, 39, 40, 42] and the

references therein. In addition, SOCAVEs (1.2) is a natural extension of the standard

absolute value equations (AVEs)

Ax− |x| = b, (1.4)

meanwhile, SOCGAVEs (1.3) is an extension of the generalized absolute value equa-

tions (GAVEs)

Cx+D|x| = c. (1.5)

In AVEs (1.4) and GAVEs (1.5), the vector |x| denotes the componentwise absolute

value of the vector x ∈ R
n. It is known that GAVEs (1.5) with m = n was first in-

troduced by Rohn in [44] and further investigated in [18, 31, 43] and the references

therein. Obviously, AVEs (1.4) is a special case of GAVEs (1.5).

Over the past two decades, AVEs (1.4) and GAVEs (1.5) have been widely stud-

ied because of their relevance to many mathematical programming problems, such

as the linear complementarity problem (LCP), the bimatrix game and others, see e.g.

[31, 34, 43]. Hence, abundant theoretical results and numerical algorithms for both

AVEs (1.4) and GAVEs (1.5) have been established. On the theoretical aspect, for in-

stance, Mangasarian [31] showed that solving GAVEs (1.5) is NP-hard; if GAVEs (1.5)

has a solution, checking whether it has a unique solution or multiple solutions is NP-

complete [43]. Moreover, various sufficient or necessary conditions on solvability and


