
Numer. Math. Theor. Meth. Appl. Vol. 18, No. 1, pp. 259-284

doi: 10.4208/nmtma.OA-2024-0069 February 2025

Two Dynamical Models Based on Projection

Operator for Solving the System of Absolute Value

Equations Associated with Second-Order Cone

Cairong Chen1, Dongmei Yu2,*, Deren Han3

and Changfeng Ma1

1 School of Mathematics and Statistics, FJKLMAA and Center for Applied

Mathematics of Fujian Province, Fujian Normal University, Fuzhou 350007,

P.R. China
2 Institute for Optimization and Decision Analytics, Liaoning Technical
University, Fuxin 123000, P.R. China
3 LMIB of the Ministry of Education, School of Mathematical Sciences, Beihang

University, Beijing 100191, P.R. China

Received 13 June 2024; Accepted (in revised version) 25 November 2024

Abstract. A new equivalent reformulation of the absolute value equations associ-
ated with second-order cone (SOCAVEs) is emphasised, from which two dynamical

models based on projection operator for solving SOCAVEs are constructed. Under

suitable conditions, it is proved that the equilibrium points of the dynamical sys-
tems exist and could be (globally) asymptotically stable. The effectiveness of the

proposed methods are illustrated by some numerical simulations.

AMS subject classifications: 90C30, 90C33, 65K10

Key words: Absolute value equations, second-order cone, dynamical system, asymptotical sta-
bility, equilibrium point.

1. Introduction

The second-order cone (SOC) in R
n is defined by

Kn =
{

(x1, x2) ∈ R× R
n−1 : ‖x2‖ ≤ x1

}

,

where ‖·‖ denotes the Euclidean norm. If n = 1, let Kn represent the set of nonnegative

reals. Moreover, a general SOC K ⊂ R
n could be the Cartesian product of some SOCs

[10,11,15], i.e.

K = Kn1 × · · · × Knr
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with n1, · · · , nr, r ≥ 1 and n1 + · · · + nr = n. Without loss of generality, we focus on

the case that r = 1 because all the analysis can be carried over to the setting of r > 1
according to the property of the Cartesian product. For any x = (x1, x2) ∈ R × R

n−1

and y = (y1, y2) ∈ R× R
n−1, their Jordan product is defined as [10,11,15]

x ◦ y = (〈x, y〉, y1x2 + x1y2) ∈ R× R
n−1,

where 〈·, ·〉 denotes the Euclidean inner product in R
n. With this definition, the absolute

value vector |x| in SOC Kn is computed by

|x| =
√
x ◦ x. (1.1)

In this paper, we consider the problem of solving the absolute value equations asso-

ciated with SOC (SOCAVEs) of the form

Ax− |x| − b = 0 (1.2)

with A ∈ R
n×n and b ∈ R

n. Unless otherwise stated, throughout this paper, |x| is

defined as in (1.1). SOCAVEs (1.2) is a special case of the generalized absolute value

equations associated with SOC (SOCGAVEs)

Cx+D|x| − c = 0 (1.3)

with C,D ∈ R
m×n and c ∈ R

m. To the best of our knowledge, SOCGAVEs (1.3) was

formally introduced by Hu et al. [20] and further studied in [23, 39, 40, 42] and the

references therein. In addition, SOCAVEs (1.2) is a natural extension of the standard

absolute value equations (AVEs)

Ax− |x| = b, (1.4)

meanwhile, SOCGAVEs (1.3) is an extension of the generalized absolute value equa-

tions (GAVEs)

Cx+D|x| = c. (1.5)

In AVEs (1.4) and GAVEs (1.5), the vector |x| denotes the componentwise absolute

value of the vector x ∈ R
n. It is known that GAVEs (1.5) with m = n was first in-

troduced by Rohn in [44] and further investigated in [18, 31, 43] and the references

therein. Obviously, AVEs (1.4) is a special case of GAVEs (1.5).

Over the past two decades, AVEs (1.4) and GAVEs (1.5) have been widely stud-

ied because of their relevance to many mathematical programming problems, such

as the linear complementarity problem (LCP), the bimatrix game and others, see e.g.

[31, 34, 43]. Hence, abundant theoretical results and numerical algorithms for both

AVEs (1.4) and GAVEs (1.5) have been established. On the theoretical aspect, for in-

stance, Mangasarian [31] showed that solving GAVEs (1.5) is NP-hard; if GAVEs (1.5)

has a solution, checking whether it has a unique solution or multiple solutions is NP-

complete [43]. Moreover, various sufficient or necessary conditions on solvability and
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non-solvability of AVEs (1.4) and GAVEs (1.5) were discussed in [19,34,37,43,45]. The

latest trend is to investigate the error bound and the condition number of AVEs (1.4)

[51]. On the numerical aspect, there are many algorithms for solving AVEs (1.4)

and GAVEs (1.5). For instance, the Newton-type methods [3, 4, 33], the SOR-like

method [6, 25], the concave minimization methods [32, 50], the exact and inexact

Douglas-Rachford splitting methods [8] and others, see e.g. [1, 7, 29, 35, 36, 47–49]

and the references therein.

We are interested in SOCAVEs (1.2) and SOCGAVEs (1.3) not only because they

are extensions of the standard ones, but also because they are equivalent with some

LCPs associated with SOC (SOCLCPs), which have various applications in engineering,

control and finance [20,38,40]. Recently, some numerical methods and theoretical re-

sults have been developed for SOCAVEs (1.2) and SOCGAVEs (1.3). For the numerical

side, Hu et al. [20] proposed a generalized Newton method for solving SOCGAVEs (1.3)

(here and in the sequel, we assume m = n). Then, Huang and Ma [23] presented some

weaker convergent conditions of the generalized Newton method. Miao et al. [40] pro-

posed a smoothing Newton method for SOCGAVEs (1.3) and a unified way to construct

smoothing functions is explored in [42]. Huang and Li [22] proposed a modified SOR-

like method for SOCAVEs (1.2). Miao et al. [41] suggested a Levenberg-Marquardt

method with Armijo line search for SOCAVEs (1.2). For the theoretical side, Miao

et al. [39] studied the existence and nonexistence of solution to SOCAVEs (1.2) and

SOCGAVEs (1.3). In addition, the unique solvability for SOCAVEs (1.2) and SOC-

GAVEs (1.3) was also investigated in [39]. Miao and Chen [38] investigated conditions

under which the unique solution of SOCAVEs (1.2) is guaranteed, which are different

from those in [39]. Hu et al. proved that SOCGAVEs (1.3) is equivalent to the following

problem: Find x, y ∈ R
n such that

Mx+ Py = p,

x ∈ Kn, y ∈ Kn, 〈x, y〉 = 0,
(1.6)

where M,P ∈ R
n×n and p ∈ R

n. However, the problem (1.6) is not a standard SOCLCP,

which is in the form of

z ∈ Kℓ, w = Nz + q ∈ Kℓ, 〈z, w〉 = 0, (1.7)

where N ∈ R
ℓ×ℓ and q ∈ R

ℓ. Miao et al. [40] showed that SOCGAVEs (1.3) is equiva-

lent to SOCLCP (1.7) with

N =





−I 2I 0
C D − C 0
−C C −D 0



 , z =





2x+
|x|
0



 , q =





0
−c
c



 ,

where x+ is the projection of x onto the SOC Kn. Note that the above matrix N has

three times the dimension of the matrix A (or B) (i.e., ℓ = 3n). More recently, Miao

and Chen [38], under the condition that 1 is not an eigenvalue of A or N , provided the
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equivalence between SOCAVEs (1.2) and SOCLCP (1.7) without changing the dimen-

sion (i.e., ℓ = n). The goals of this paper are twofold: to highlight another equivalent

reformulation of SOCAVEs (1.2) and to present two dynamical models to solve SO-

CAVEs (1.2). In contrast to the numerical methods mentioned above, our methods

are from a continuous perspective. Our work here is inspired by recent studies on

AVEs (1.4) [7].

The rest of this paper is organized as follows. In Section 2, a few relevant basic

results on the SOC and the autonomous system are introduced. In Section 3, an equiv-

alent reformulation of SOCAVEs (1.2) is recalled, and two dynamical models and their

stability analysis are given. Numerical simulations are given in Section 4. Conclusions

are made in Section 5.

Notation. The set of all n × n real matrices is denoted by R
n×n and R

n = R
n×1.

We use I to denote the identity matrix with suitable dimension. The transposition

of a matrix or a vector is denoted by ·⊤. The inner product of two vectors in R
n is

defined as

〈x, y〉 .
=

n
∑

i=1

xiyi and ‖x‖ .
=

√

〈x, x〉.

The spectral norm of A is denoted by ‖A‖ and is defined by the formula

‖A‖ .
= max

{

‖Ax‖ : x ∈ R
n, ‖x‖ = 1

}

.

We use tridiag(a, b, c) to denote a tridiagonal matrix, which has a, b, c as the subdiago-

nal, main diagonal and superdiagonal entries, respectively. A matrix A ∈ R
n×n is said

to be positive definite if 〈Ax, x〉 > 0 for all 0 6= x ∈ R
n.

2. Preliminaries

In this section, we collect some results which lay the foundation of our later anal-

ysis. We first recall some basic concepts and background materials regarding SOCs,

which can be found in [2,10,11,14,15].

For x = (x1, x2) ∈ R×R
n−1, the spectral decomposition of x with respect to SOC is

given by

x = λ1(x)u
(1)
x + λ2(x)u

(2)
x , (2.1)

where

λi(x) = x1 + (−1)i‖x2‖,

u(i)x =











1

2

(

1, (−1)i
x2

‖x2‖

)

, if x2 6= 0,

1

2

(

1, (−1)iw
)

, if x2 = 0

for i = 1, 2 and w is any vector in R
n−1 with ‖w‖ = 1. If x2 6= 0, the spectral decompo-

sition is unique. We call λ1(x) and λ2(x) the eigenvalues of x and {u(1)x , u
(2)
x } is called
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a Jordan frame of x. It is known that λ1(x) and λ2(x) are nonnegative if and only if

x ∈ Kn. For any real-valued function f : R → R, we define a function on R
n associated

with Kn by

f(x)
.
= f

(

λ1(x)
)

u(1)x + f
(

λ2(x)
)

u(2)x ,

if x ∈ R
n has the spectral decomposition (2.1). Then we have

|x| =























1

2

(

|x1 − ‖x2‖|+ |x1 + ‖x2‖|,

(|x1 + ‖x2‖| − |x1 − ‖x2‖|)
x2
‖x2‖

)

, if x2 6= 0,

(|x1|, 0), if x2 = 0.

(2.2)

The projection mapping from R
n onto Ω ⊂ R

n, denoted by PΩ, is defined as

PΩ(x)
.
= argmin

{

‖x− y‖ : y ∈ Ω
}

.

Given u ∈ R
n and a nonempty closed convex subset Ω of Rn, µ is the projection of u

onto Ω, i.e., µ = PΩ(u) if and only if (see e.g. [5, Theorem 1.2.4])

〈u− µ, v − µ〉 ≤ 0, ∀v ∈ Ω. (2.3)

As mentioned earlier, let x+ be the projection of x = (x1, x2) ∈ R×R
n−1 onto Kn, then

we have

x+ =











x, if x ∈ Kn,

0, if x ∈ −Kn,

u, otherwise,

(2.4)

where

u =









x1 + ‖x2‖
2

(

x1 + ‖x2‖
2

)

x2
‖x2‖









.

The dual cone of Kn is defined as

(Kn)∗
.
=

{

y ∈ R
n : 〈x, y〉 ≥ 0,∀x ∈ Kn

}

.

It is known that SOC Kn is a pointed close convex cone and it is self-dual (i.e., (Kn)∗ =
Kn).

Now we turn to the autonomous system. Consider the autonomous system

dx

dt
= g(x), (2.5)

where g is a function from R
n to R

n. Throughout this paper, we use x(t;x(t0)) to

denote the solution of (2.5) determined by the initial value condition x(t0) = x0. The

following results are well-known and can be found in [27, Chapters 2,3].
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Definition 2.1. The function F : Rn → R
n is said to be Lipschitz continuous with Lips-

chitz constant L > 0 if

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀x, y ∈ R
n.

Lemma 2.1. Assume that g : R
n → R

n is Lipschitz continuous in R
n, then for arbi-

trary t0 ≥ 0 and x(t0) = x0 ∈ R
n, the dynamical system (2.5) has a unique solution

x(t;x(t0)), t ∈ [t0,+∞).

Definition 2.2 (Equilibrium Point). A vector x∗ ∈ R
n is called an equilibrium point of

the dynamical system (2.5) if g(x∗) = 0.

Definition 2.3. The equilibrium point x∗ of (2.5) is stable if, for any ǫ > 0, there exists

a δ = δ(ǫ) > 0 such that

‖x(t0)− x∗‖ < δ ⇒ ‖x(t;x(t0))− x∗‖ < ǫ, ∀t ≥ t0.

Furthermore, the equilibrium point x∗ of (2.5) is asymptotically stable if it is stable and δ
can be chosen such that

‖x(t0)− x∗‖ < δ ⇒ lim
t→∞

x
(

t;x(t0)
)

= x∗.

Theorem 2.1. Let x∗ be an equilibrium point of (2.5) and Ω ⊆ R
n be a domain contain-

ing x∗. If there is a continuously differentiable function V : Ω → R such that

V (x∗) = 0, V (x) > 0, ∀x ∈ Ω\{x∗},
dV (x)

dt
= ∇V (x)⊤g(x) ≤ 0, ∀x ∈ Ω,

then x∗ is stable. Moreover, if

dV (x)

dt
< 0, ∀x ∈ Ω\{x∗},

then x∗ is asymptotically stable.

Theorem 2.2. Let x∗ be an equilibrium point for (2.5). If there exists a continuously

differentiable function V : Rn → R such that

V (x∗) = 0, V (x) > 0, ∀x 6= x∗,

dV (x)

dt
< 0, ∀x 6= x∗,

‖x− x∗‖ → ∞ ⇒ V (x) → ∞,

then x∗ is globally asymptotically stable.



Two Dynamical Models for Solving the System of Absolute Value Equations 265

3. The equivalent reformulation and the dynamical models

In this section, we first highlight that SOCAVEs (1.2) is equivalent to the generalized

SOCLCP (SOCGLCP) as follows:

S(x)
.
= Ax+ x− b ∈ Kn, T (x)

.
= Ax− x− b ∈ Kn, 〈S(x), T (x)〉 = 0. (3.1)

Then, two novel dynamical models are presented to solve SOCAVEs (1.2).

In order to claim the equivalence between SOCAVEs (1.2) and SOCGLCP (3.1), we

introduce the following two lemmas.

Lemma 3.1 ([13, 31]). Let a, b ∈ R. Then a ≥ 0, b ≥ 0 and ab = 0 if and only if

a+ b = |a− b|.
Lemma 3.2. Let s, t ∈ R

n. Then

〈s, t〉 = 0, s ∈ Kn, t ∈ Kn, (3.2)

if and only if

s+ t = |s− t|. (3.3)

Proof. We first prove that (3.2) ⇒ (3.3). Since s = (s1, s2) ∈ Kn and t = (t1, t2) ∈
Kn, we have s1 ≥ ‖s2‖ and t1 ≥ ‖t2‖, which implies that

|〈s2, t2〉| ≤ ‖s2‖‖t2‖ ≤ s1t1.

Thus,

〈s, t〉 = s1t1 + s⊤2 t2 ≥ s1t1 − s1t1 = 0,

and the equality is valid if and only if s2 = kt2 (k ≥ 0), s1 = ‖s2‖ and t1 = ‖t2‖. Hence,

the vectors s and t in (3.2) share the same Jordan frame [2, 38]. Let s = λ1e1 + λ2e2
and t = µ1e1 + µ2e2, where {e1, e2} is the Jordan frame. Then we have λi, µi ≥ 0 for

i = 1, 2 and λ1µ1 = λ2µ2 = 0. It then follows from Lemma 3.1 that

λ1 + µ1 = |λ1 − µ1|, λ2 + µ2 = |λ2 − µ2|.
On the other hand, we have

s+ t = (λ1 + µ1)e1 + (λ2 + µ2)e2,

|s− t| = |λ1 − µ1|e1 + |λ2 − µ2|e2.
Hence, we have (3.3).

Next, we prove that (3.3) ⇒ (3.2). By (3.3), we know that s+ t and s− t have the

same Jordan frame, from which we obtain that s and t have the same Jordan frame.

Indeed, it follows from the fact that

2s = (s+ t) + (s− t), 2t = (s+ t)− (s − t).

Let s = λ1e1 + λ2e2 and t = µ1e1 + µ2e2. Then it follows from (3.3) that λ1 + µ1 =
|λ1−µ1| and λ2+µ2 = |λ2−µ2|, which combine with Lemma 3.1 implies that λi, µi ≥ 0
for i = 1, 2 and λ1µ1 = λ2µ2 = 0. Then we can obtain (3.2).
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Remark 3.1. Lemma 3.2 can be found in [15, Proposition 4.1] and [12, Proposi-

tion 2.2(d)]. Here we give a new proof based on the Jordan frame, which is different

from that of [15, Proposition 4.1].

According to Lemma 3.2, if we set s+ t = Ax− b and s− t = x, we can obtain the

equivalence between SOCAVEs (1.2) and SOCGLCP (3.1). We should point out that the

equivalence between SOCAVEs (1.2) and SOCGLCP (3.1) is implicit in the proof of [38,

Theorem 4.1] and the proof of Lemma 3.2 is also inspired by that of [38, Theorem 4.1].

Moreover, SOCGLCP (3.1) is equivalent to the generalized linear variational inequality

problem associated with SOC (SOCGLVI) [13]: Find x∗ ∈ R
n such that

〈v − S(x∗), T (x∗)〉 ≥ 0, S(x∗) ∈ Kn, ∀v ∈ Kn, (3.4)

which is also equivalent to finding a solution of

S(x) = PKn [S(x)− T (x)] . (3.5)

Indeed, we have the following theorem.

Theorem 3.1. The vector x∗ solves SOCAVEs (1.2) if and only if r(x∗) = 0, where

r(x) = S(x)− PKn [S(x)− T (x)] . (3.6)

Furthermore, it can be proved that

r(x) = Ax− |x| − b. (3.7)

Proof. It is enough to prove (3.7). Note that S(x) − T (x) = 2x. We will split the

proof into three cases.

(a) If x ∈ Kn, then 2x ∈ Kn. It follows from |x| = x and PKn(2x) = 2x that

S(x)− PKn [S(x)− T (x)] = Ax+ x− b− 2x = Ax− x− b = Ax− |x| − b.

(b) If x ∈ −Kn, 2x ∈ −Kn. Then it follows from |x| = −x and PKn(2x) = 0 that

S(x)− PKn [S(x)− T (x)] = Ax+ x− b− 0 = Ax− (−x)− b = Ax− |x| − b.

(c) If x /∈ Kn and x /∈ −Kn, it follows from (2.4) that

PKn(2x) =





x1 + ‖x2‖
x1x2
‖x2‖

+ x2



 .

In addition, it follows from (2.2) that

|x| =





‖x2‖
x1x2
‖x2‖



 .
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Then

S(x)− PKn [S(x)− T (x)]

= Ax+ x− b−





x1 + ‖x2‖
x1x2
‖x2‖

+ x2





= Ax−





‖x2‖
x1x2
‖x2‖



− b = Ax− |x| − b.

The proof is complete.

Remark 3.2. An anonymous referee points out a simpler way to prove Theorem 3.1,

which is described as follows. Since [9, Property 1.2(f)]

PKn(x) =
1

2
(x+ |x|),

it holds that

r(x) = S(x)− PKn [S(x)− T (x)] = Ax+ x− b− 1

2
(2x+ |2x|) = Ax− |x| − b.

In order to consider the stability of the equilibrium points of the dynamical systems

proposed below, we need the following theorem.

Theorem 3.2. If x∗ is a solution of SOCAVEs (1.2) and ‖A−1‖ ≤ 1, then

(x− x∗)⊤A⊤r(x) ≥ 1

2
‖r(x)‖2 , ∀x ∈ R

n. (3.8)

Proof. The proof is inspired by that of [17, Theorem 2]. Since Kn is a closed convex

set and S(x∗) ∈ Kn, it follows from (2.3) that

[v − PKn(v)]⊤[PKn(v)− S(x∗)] ≥ 0, ∀v ∈ R
n.

Let v
.
= S(x)− T (x), we have

[r(x)− T (x)]⊤{PKn [S(x)− T (x)]− S(x∗)} ≥ 0. (3.9)

On the other hand, it follows from

PKn(·) ∈ Kn, T (x∗) ∈ Kn = (Kn)∗, S(x∗)⊤T (x∗) = 0,

that

T (x∗)⊤{PKn [S(x)− T (x)]− S(x∗)} ≥ 0. (3.10)
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It follows from (3.9), (3.10) and

PKn [S(x)− T (x)]− S(x∗) = [S(x)− S(x∗)]− r(x)

that

{

[S(x)− S(x∗)] + [T (x)− T (x∗)]
}⊤

r(x)

≥ ‖r(x)‖2 + [S(x)− S(x∗)]⊤[T (x)− T (x∗)],

which together with the definitions of S and T in (3.1) implies

2r(x)⊤A(x− x∗) ≥ ‖r(x)‖2 + (x− x∗)⊤(A⊤A− I)(x− x∗), ∀x ∈ R
n.

Then the proof is completed with ‖A−1‖ ≤ 1.

3.1. The first dynamical model for SOCAVEs

Now we are in the position to develop a dynamical system to solve SOCAVEs (1.2).

Inspired by [16,21,30,46], we propose the following projection-type dynamical system:

dx

dt
= γA⊤

{

PKn

[

S(x)− T (x)
]

− S(x)
}

, (3.11)

where γ > 0 is a constant. According to (3.6) and (3.7), the dynamical system (3.11)

can be reduced to
dx

dt
= γA⊤(b+ |x| −Ax)

.
= h(x). (3.12)

Based on Theorem 3.1, we have the following theorem.

Theorem 3.3. Let A be nonsingular, then x∗ is a solution of SOCAVEs (1.2) if and only if

x∗ is an equilibrium point of the dynamical system (3.12).

Before ending this subsection, we will study the existence of the solutions and the

stability of the equilibrium points of the dynamical system (3.12).

Lemma 3.3. The function h defined as in (3.12) is Lipschitz continuous in R
n with Lips-

chitz constant γ‖A⊤‖(‖A‖ + 1).

Proof. Since ‖|x1| − |x2|‖ ≤ ‖x1 − x2‖ [23, 26, 39], the proof is trivial according

to [7, Lemma 3.1].

Based on Lemmas 2.1 and 3.3, we have the following theorem.

Theorem 3.4. For a given initial value x(t0) = x0, there exists a unique solution x(t;x(t0)),
t ∈ [t0,+∞) for the dynamical system (3.12).

Now we can give the following stability theorem.
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Theorem 3.5. Let ‖A−1‖ ≤ 1, then the equilibrium point x∗ (if it exists) of the dynamical

system (3.12) is asymptotically stable. In particular, if ‖A−1‖ < 1, then the unique

equilibrium point x∗ of the dynamical system (3.12) is globally asymptotically stable.

Proof. Let x = x(t;x(t0)) be the solution of (3.12) with initial value x(t0) = x0 and

x∗ is the equilibrium point nearby x0. Let

V (x) =
1

2
‖x− x∗‖2, x ∈ R

n.

It is easy to check that V (x∗) = 0 and V (x) > 0 for all x 6= x∗. Moreover, it follows

from (3.8) that

d

dt
V (x) =

dV

dx

dx

dt

= −γ(x− x∗)⊤A⊤r(x)

≤ −γ

2
‖r(x)‖2 < 0, ∀x 6= x∗.

Hence, the first part of the theorem follows from Theorem 2.1.

If ‖A−1‖ < 1, SOCAVEs (1.2) has a unique solution [39] and thus the equilibrium

point of (3.12) is unique. Since V (x) → ∞ as ‖x − x∗‖ → ∞, it follows from Theo-

rem 2.2 that the unique equilibrium point is globally asymptotically stable.

Remark 3.3. If ‖A−1‖ = 1, then SOCAVEs (1.2) may have no solutions, more than one

solutions or a unique solution (see Section 4 for more detail).

3.2. The second dynamical model for SOCAVEs

In this subsection, the dynamical model (3.12) is simplified in order to reduce com-

putation. As a trade-off, we require the coefficient matrix A to be symmetric and pos-

itive definite. Concretely, based on Theorem 3.1, we propose another projection-type

dynamical system to solve SOCAVEs (1.2)

dx

dt
= γ {PKn [S(x)− T (x)]− S(x)} , (3.13)

where γ > 0 is a constant. Substituting (3.6) and (3.7) into (3.13), we obtain†

dx

dt
= γ(b+ |x| −Ax)

.
= l(x). (3.14)

It follows from Theorem 3.1 that the equilibrium point of (3.14) equals the solution

to SOCAVEs (1.2). That is, we have the following theorem.

†Comparing (3.12) and (3.14), it is easy to find that the structure of (3.14) is simpler than that of (3.12),

which frequently results in (3.14) having a lower computational cost than (3.12).
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Theorem 3.6. x∗ is a solution of SOCAVEs (1.2) if and only if x∗ is an equilibrium point

of the dynamical system (3.14).

In the following, we will study the existence of the solution and the stability of the

equilibrium point of the dynamical system (3.14).

Similar to the proof of Lemma 3.3, we have the following lemma.

Lemma 3.4. The function l defined as in (3.14) is Lipschitz continuous in R
n with Lips-

chitz constant γ(‖A‖ + 1).

Based on Lemmas 2.1 and 3.4, the following theorem can be concluded.

Theorem 3.7. For a given initial value x(t0) = x0, there exists a unique solution x(t;x(t0)),
t ∈ [t0,+∞) for the dynamical system (3.14).

In the following, we can give the stability theorem of the dynamical system (3.14).

Theorem 3.8. If the coefficient matrix A is symmetric and positive definite and ‖A−1‖ ≤
1, then the equilibrium point x∗ (if it exists) of the dynamical system (3.14) is asymptot-

ically stable. In particular, if A is symmetric and positive definite and ‖A−1‖ < 1, then

the unique equilibrium point x∗ of the dynamical system (3.14) is globally asymptotically

stable.

Proof. Let x = x(t;x(t0)) be the solution of (3.14) with initial value x(t0) = x0 and

x∗ is the equilibrium point nearby x0. Consider the following Lyapunov function:

Ṽ (x) = e(x−x∗)⊤A(x−x∗) − 1, x ∈ R
n.

It is easy to see that Ṽ (x∗) = 0 and A is positive definite implies that Ṽ (x) > 0 for all

x 6= x∗. Moreover, it follows from (3.8), (3.14) and the symmetry of A that

d

dt
Ṽ (x) =

dṼ

dx

dx

dt

= −γe(x−x∗)⊤A(x−x∗)
[

A(x− x∗) +A⊤(x− x∗)
]⊤

r(x)

≤ −γe(x−x∗)⊤A(x−x∗) ‖r(x)‖2 < 0, ∀x 6= x∗.

Hence, the first part of the theorem follows from Theorem 2.1. The remainder part of

the proof is similar to that of Theorem 3.5.

4. Numerical simulations

In this section, we will present four examples to illustrate the effectiveness of the

proposed methods. All experiments are implemented in MATLAB R2018b with a ma-

chine precision 2.22 × 10−16 on a PC Windows 10 operating system with an Intel i7-

9700 CPU and 8GB RAM. The involved systems of ordinary differential equations can
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be solved by the MATLAB “ode23” routine, which uses the embedded Fehlberg (2, 3)
pair of explicit Runge-Kutta methods in extrapolated error-per-step (XEPS) mode [28].

More concretely, we use the MATLAB built-in expression

[t, y] = ode23(odefun, tspan, y0),

which integrates the system of differential equations from t0 to tf with tspan = [t0, tf ].
In general, it is not an easy task to choose tf efficiently since the upper bound of the

settling time is not a prior for our models. In the following, we select tf by the trial-

and-error method until the solution satisfies the termination criterion.

Example 4.1 ([23]). Consider SOCAVEs (1.2) with

A = tridiag(−1, 4,−1) ∈ R
n×n, b = Ax∗ − |x∗|,

where

x∗ = (−1, 1,−1, 1, · · · ,−1, 1)⊤ ∈ R
n.

In this example, ‖A−1‖ < 1 and A is symmetric and positive definite. Thus, SO-

CAVEs (1.2) has a unique solution for any b ∈ R
n. Equivalently, both (3.12) and (3.14)

have a unique equilibrium point and its globally asymptotical stability will be numeri-

cally checked. We first set t0 = 0 and tf = 0.3 for this example. In Fig. 1, we show the

phase diagram of the state x(t) with different initial points for n = 2 and n = 3, which

visually display the globally asymptotical stability of the unique equilibrium point of

(3.12) and (3.14). In Fig. 2, we show the influence of the parameter γ for (3.12) and

(3.14), from which we find that the larger γ is, the faster convergence is. The same

phenomenon occurred in some existing works, such as [7,24].

In the following, we compare the efficiency of (3.12) and (3.14) by running them

such that

Res =
‖Ax− |x| − b‖

‖b‖ ≤ 10−6.

Here, we set t0 = 0, γ = 2 and x0 = (0, 0, · · · , 0)⊤ for both models. Numerical results

are reported in Table 1, from which we can conclude that (3.14) is better than (3.12)

in terms of CPU (the elapsed CPU time in seconds), especially for large scale problems.

This means that we can benefit from exploiting the inherent structure of the problem.

In the following, we will give three examples for ‖A−1‖ = 1, in which SOCAVEs (1.2)

may have more than one solutions, a unique solution or no solutions. In the following

examples, γ = 2 is used.

Example 4.2. Consider SOCAVEs (1.2) with

A =

[

1 0
0 −1

]

, b =

[

0
0

]

.

Obviously, SOCAVEs (1.2) has infinitely many solutions for this example. Thus,

there are infinitely many equilibrium points to (3.12) and (3.14), respectively. In fact,
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Figure 1: Phase diagrams of (3.12) (the up two subfigures) and (3.14) (the below two subfigures) for
Example 4.1 (Left figures: n = 2 and 16 different initial points are used; Right figures: n = 3 and 20
different initial points are used). The exact equilibrium point is marked as red star point.
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Figure 2: Convergence behaviors of ‖x(t)− x
∗‖ (left figures) and transient behaviors of x(t) (right figures)

for Example 4.1 with n = 1000 and x0 = (0, 0, · · · , 0)⊤. The up two subfigures for (3.12) and the others
for (3.14).
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Table 1: Comparison results for Example 4.1.

n Model (3.12) (3.14)

10000

tf 2.9 2.3

CPU 1.6938 0.5044

Res 5.4372× 10−7 9.7293× 10−7

15000

tf 13.8 2.3

CPU 38.2354 0.7247

Res 8.7963× 10−7 7.5307× 10−7

20000

tf 11.9 2.3

CPU 37.2243 0.8808

Res 7.2054× 10−7 7.6512× 10−7

25000

tf 13.8 2.3

CPU 61.0621 1.1111

Res 7.5087× 10−7 8.2130× 10−7

30000

tf 11.3 2.3

CPU 47.6195 1.2877

Res 8.8768× 10−7 8.3634× 10−7

the vectors x = (x1, 0)
⊤ with any x1 ≥ 0 are equilibrium points of (3.12) and (3.14).

According to Theorem 3.5, any solution of (3.12) will converge to an equilibrium point

of it. However, the solution of (3.14) may not converge to any equilibrium point of it

since A is not positive definite (though it is symmetric). Fig. 3 displays the transient be-

haviors of x(t) = (x1(t), x2(t))
⊤ for (3.12) with 7 different initial points, from which we

find that each trajectory generated by the dynamical system (3.12) approaches to a so-

lution of SOCAVEs (1.2). Fig. 4 displays the transient behaviors of x(t) = (x1(t), x2(t))
⊤

for (3.14) with 7 different initial points, from which we find that each trajectory gener-

ated by the dynamical system (3.14) does not approach to a solution of SOCAVEs (1.2).

Numerical results demonstrate our claims.

Specifically, we have the following monotone properties of the solution of (3.12):

(a) If x1 ≥ |x2| ≥ 0, then

dx1
dt

= 0,

dx2
dt

= −2γx2 ⇒











dx2
dt

≥ 0, if x2 ≤ 0,

dx2
dt

< 0, if x2 > 0.

(b) If −|x2| < x1 < |x2|, then

dx1
dt

= γ(|x2| − x1) > 0,
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dx2
dt

= −γ

(

1 +
x1
|x2|

)

x2 ⇒











dx2
dt

≥ 0, if x2 ≤ 0,

dx2
dt

< 0, if x2 > 0.

(c) If x1 ≤ −|x2| ≤ 0, then

dx1
dt

= −2γx1 ≥ 0,

dx2
dt

= 0.

For (3.14), dx1/dt is the same with that of (3.12) while dx2/dt is the negative of that

of (3.12). The same goes to Example 4.3.

Example 4.3. Consider SOCAVEs (1.2) with

A =

[

1 0
0 −1

]

, b =

[

−1
−1

]

.

Obviously, SOCAVEs (1.2) has a unique solution x∗ = (0, 1)⊤ for this example.

Thus, there is a unique equilibrium point for (3.12) and (3.14), respectively. According

to Theorem 3.5, any solution of (3.12) will converge to the unique equilibrium point

of it. Fig. 5 displays the transient behaviors of x(t) = (x1(t), x2(t))
⊤ for (3.12) with 8

different initial points, from which we find that all of the trajectories generated by the

dynamical system (3.12) approach to the unique solution of SOCAVEs (1.2). However,

similar to Example 4.2, any solution of (3.14) will not converge to the unique equilib-

rium point of it since A is not positive definite (though it is symmetric). In addition,

we have the following monotone properties of the solution of (3.12):

(a) If x1 ≥ |x2| ≥ 0, then

dx1
dt

= −γ < 0,

dx2
dt

= −γ(−1 + 2x2) ⇒











dx2
dt

≥ 0, if x2 ≤
1

2
,

dx2
dt

< 0, if x2 >
1

2
.

(b) If −|x2| < x1 < |x2|, then

dx1
dt

= γ(−1 + |x2| − x1) ⇒











dx1
dt

≥ 0, if x1 ≥ 1− |x2|,
dx1
dt

< 0, if x1 < 1− |x2|,
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Figure 3: Transient behaviors of (3.12) for Example 4.2 (tspan = [0, 5]).
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Figure 4: Transient behaviors of (3.14) for Example 4.2 (tspan = [0, 1]).
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Figure 5: Transient behaviors of (3.12) for Example 4.3 (tspan = [0, 5]).
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Figure 6: Transient behaviors of (3.14) for Example 4.3 (tspan = [0, 1]).
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dx2
dt

= −γ

[

−1 +

(

1 +
x1
|x2|

)

x2

]

⇒















dx2
dt

≥ 0, if x2 ≤
|x2|

x1 + |x2|
,

dx2
dt

< 0, if x2 >
|x2|

x1 + |x2|
.

(c) If x1 ≤ −|x2| ≤ 0, then

dx1
dt

= γ(−1− 2x1) ⇒











dx1
dt

≥ 0, if x1 ≤ −1

2
,

dx1
dt

< 0, if x1 > −1

2
,

dx2
dt

= γ > 0.

Example 4.4. Consider SOCAVEs (1.2) with

A =

[

1 0
0 1

]

, b =

[

1
1

]

.

SOCAVEs (1.2) has no solutions for this example. Thus, the dynamical system (3.12)

has no equilibrium points. Furthermore, (3.12) is equal to (3.14) for this example since

A⊤ = I. Indeed, we have

(a) If x1 ≥ |x2| ≥ 0, then

dx1
dt

= γ > 0,

dx2
dt

= γ > 0.

(b) If −|x2| < x1 < |x2|, then

dx1
dt

= γ(1 + |x2| − x1) > 0,

dx2
dt

= γ

[

1 +

(

x1
|x2|

− 1

)

x2

]

⇒















dx2
dt

≥ 0, if x2 ≤ − |x2|
x1 − |x2|

,

dx2
dt

< 0, if x2 > − |x2|
x1 − |x2|

.

(c) If x1 ≤ −|x2| ≤ 0, then

dx1
dt

= γ(1− 2x1) > 0,

dx2
dt

= γ(1− 2x2) ⇒











dx2
dt

≥ 0, if x2 ≤
1

2
,

dx2
dt

< 0, if x2 >
1

2
.
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Figure 7: Transient behaviors of (3.12) (and (3.14)) for Example 4.4 (tspan = [0, 10]).
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Thus, for any initial value x0, at least x1(t) in the solution of (3.12) (and (3.14))

is strictly monotonically increasing. Fig. 7 displays the transient behaviors of x(t) =
(x1(t), x2(t))

⊤ with 8 different initial points, which illustrates our claims.

Examples 4.2 and 4.3 show that the positive definiteness of A is needed for the

stability of (3.14). But so far we have not found a solvable SOCAVEs (1.2) with non-

symmetric positive definite A and ‖A−1‖ ≤ 1 such that the equilibrium point of (3.14)

is unstable. We left it as an open question that can we prove the stability of (3.14)

under the conditions in Theorem 3.8 without the symmetry of A.

5. Brief conclusion

In this paper, two novel dynamical models are proposed to solve SOCAVEs (1.2),

which are different from the existing conventional optimization methods for SOCAVEs

(1.2). Theoretical results show that the presented models are globally convergent un-

der certain conditions. Numerical results are given to show the effectiveness of our

methods.
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