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Abstract. Deep generative models aim to learn the underlying distribution of data

and generate new ones. Despite the diversity of generative models and their high-
quality generation performance in practice, most of them lack rigorous theoretical

convergence proofs. In this work, we aim to establish some convergence results for
OT-Flow, one of the deep generative models. First, by reformulating the framework

of OT-Flow model, we establish the Γ-convergence of the formulation of OT-Flow

to the corresponding optimal transport (OT) problem as the regularization term
parameter α goes to infinity. Second, since the loss function will be approximated

by Monte Carlo method in training, we established the convergence between the

discrete loss function and the continuous one when the sample number N goes to
infinity as well. Meanwhile, the approximation capability of the neural network

provides an upper bound for the discrete loss function of the minimizers. The proofs
in both aspects provide convincing assurances for the stability of OT-Flow.
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1. Introduction

Deep generative models [15, 21, 23, 33] are increasingly being adopted as the pre-

ferred methodology across various tasks due to their impressive performance, includ-

ing solving inverse problems [7], image generation [10], text-to-image [32] and video

generation [25]. The widely-used frameworks include diffusion probabilistic models
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(DPMs) [3, 17, 36], continuous normalizing flows (CNFs) [8, 16], variational auto-

encoders (VAEs) [21, 23] and generative adversarial networks (GANs) [2, 15]. Among

above four popular frameworks, CNFs are characterized by continuous-time ordinary

differential equations (ODEs), and DPMs utilize stochastic differential equations (SDEs)

as their backbone. Through DPMs and CNFs, samples evolve from data points to Gaus-

sian distribution in the forward process and gradually remove noise to generate samples

in the backward process. In comparison with GANs and VAEs, samples of DPMs and

CNFs are generated in smoother ways, not only achieving superior sample quality but

also enabling exact likelihood computation. Despite the diversity of generative models

and their outstanding performance in downstream tasks, the mathematical principles

behind the models and rigorous convergence proofs are developed far behind the rapid

iteration of the models. In this paper, our focus lies in establishing convergence results

for OT-Flow, which stands as one of the practical CNFs. Such convergence analysis

ensures stability during the training and aids in comprehending the underlying mech-

anisms of the model.

The continuous normalizing flows (CNFs) are a class of sample generative models

based on particle transportation purely. The CNFs aim to build continuous and invert-

ible mappings between an arbitrary distribution ρ0 and standard normal distribution

ρ1 by setting the velocity field as an output of neural network. In particular, for a given

time T , one is trying to obtain a mapping z : Rd × [0, T ] → Rd, which defines a contin-

uous evolution x 7→ z(x, t) of every x ∈ Rd. Then the density ρ(z(x, t), t) satisfies

log ρ0(x) = log ρ
(

z(x, t), t
)

+ log |det∇z(x, t)| for all x ∈ Rd. (1.1)

Especially at time T we have

log ρ0(x) = log ρ1
(

z(x, T ), T
)

+ log |det∇z(x, T )|.

Define

ℓ(x, t) := log |det∇z(x, t)|,

then z(x, t) and ℓ(x, t) satisfy the following ODE system:

∂t

[

z(x, t)
ℓ(x, t)

]

=

[

v(z(x, t), t;θ)
tr(∇v(z(x, t), t;θ))

]

,

[

z(x, 0)
ℓ(x, 0)

]

=

[

x
0

]

. (1.2)

To train the dynamics, CNFs minimize the expected negative log-likelihood given by the

right-hand-side in (1.1), or equivalently the KL divergence between target distribution

and final distribution under the constraint (1.2) [16,31,33]

J = KL
[

ρ(z(x, T ))‖ρ1(z(x, T ))
]

. (1.3)

For convenience we solve (1.2) together to obtain the change of ρ, which will lead to

a more efficient estimation of density.

From the ODE system (1.2), we can see that once the velocity field is learned, one

can track the evolution of density and invert the transport map by running the ODE


