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Abstract. Deep generative models aim to learn the underlying distribution of data
and generate new ones. Despite the diversity of generative models and their high-
quality generation performance in practice, most of them lack rigorous theoretical
convergence proofs. In this work, we aim to establish some convergence results for
OT-Flow, one of the deep generative models. First, by reformulating the framework
of OT-Flow model, we establish the I'-convergence of the formulation of OT-Flow
to the corresponding optimal transport (OT) problem as the regularization term
parameter « goes to infinity. Second, since the loss function will be approximated
by Monte Carlo method in training, we established the convergence between the
discrete loss function and the continuous one when the sample number N goes to
infinity as well. Meanwhile, the approximation capability of the neural network
provides an upper bound for the discrete loss function of the minimizers. The proofs
in both aspects provide convincing assurances for the stability of OT-Flow.
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1. Introduction

Deep generative models [15,21,23,33] are increasingly being adopted as the pre-
ferred methodology across various tasks due to their impressive performance, includ-
ing solving inverse problems [7], image generation [10], text-to-image [32] and video
generation [25]. The widely-used frameworks include diffusion probabilistic models
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(DPMs) [3,17,36], continuous normalizing flows (CNFs) [8, 16], variational auto-
encoders (VAEs) [21,23] and generative adversarial networks (GANs) [2,15]. Among
above four popular frameworks, CNFs are characterized by continuous-time ordinary
differential equations (ODEs), and DPMs utilize stochastic differential equations (SDEs)
as their backbone. Through DPMs and CNFs, samples evolve from data points to Gaus-
sian distribution in the forward process and gradually remove noise to generate samples
in the backward process. In comparison with GANs and VAEs, samples of DPMs and
CNFs are generated in smoother ways, not only achieving superior sample quality but
also enabling exact likelihood computation. Despite the diversity of generative models
and their outstanding performance in downstream tasks, the mathematical principles
behind the models and rigorous convergence proofs are developed far behind the rapid
iteration of the models. In this paper, our focus lies in establishing convergence results
for OT-Flow, which stands as one of the practical CNFs. Such convergence analysis
ensures stability during the training and aids in comprehending the underlying mech-
anisms of the model.

The continuous normalizing flows (CNFs) are a class of sample generative models
based on particle transportation purely. The CNFs aim to build continuous and invert-
ible mappings between an arbitrary distribution py and standard normal distribution
p1 by setting the velocity field as an output of neural network. In particular, for a given
time T, one is trying to obtain a mapping z : R% x [0, 7] — R¢, which defines a contin-
uous evolution = — z(x,t) of every € R?. Then the density p(z(z,t),t) satisfies

log po(z) = log p(2(z,t),t) + log|det Vz(z,t)| forall =€ RY. (1.1)
Especially at time T' we have
log po(x) =log p1(2(x,T),T) + log | det Vz(z, T)|.

Define
l(x,t) = log |det Vz(z,t)],

then z(z,t) and ¢(z, t) satisfy the following ODE system:

[0 = Leititon ] [iED]-[5] a2

To train the dynamics, CNFs minimize the expected negative log-likelihood given by the
right-hand-side in (1.1), or equivalently the KL divergence between target distribution
and final distribution under the constraint (1.2) [16,31, 33]

J = KLp(z(e, T))]| 1 ((z, 7)) (1.3)

For convenience we solve (1.2) together to obtain the change of p, which will lead to
a more efficient estimation of density.

From the ODE system (1.2), we can see that once the velocity field is learned, one
can track the evolution of density and invert the transport map by running the ODE



