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Abstract. Inspired by the row and column action methods for solving large-scale

linear systems, in this work, we explore the use of frontal slices for solving tensor
linear systems. In particular, this paper presents a novel approach for using frontal

slices of a tensor A to solve tensor linear systems A ∗ X = B where ∗ denotes the t-

product. In addition, we consider variations of this method, including cyclic, block,
and randomized approaches, each designed to optimize performance in different

operational contexts. Our primary contribution lies in the development and conver-
gence analysis of these methods. Experimental results on synthetically generated

and real-world data, including applications such as image and video deblurring,

demonstrate the efficacy of our proposed approaches and validate our theoretical
findings.
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1. Introduction

In the realm of contemporary data science, the availability of multi-dimensional

data, commonly referred to as tensors, has catalyzed transformative advances across

diverse domains such as machine learning [8, 46], neuroimaging [38], recommenda-

tion systems [6] and signal processing [7, 43, 47]. Tensors, which extend beyond the

simpler constructs of matrices, encapsulate higher-order interactions within data that

matrices alone cannot. While potentially offering a more comprehensive framework

for analysis and predictive modeling [7, 27], tensors come with complexity and high

dimensionality, which introduce escalated computational costs and demanding storage

requirements, particularly in large-scale and high-fidelity compressible datasets [1,25].
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In this work, we are interested in solving large-scale consistent tensor multi-linear

systems of the form

A ∗ X = B, (1.1)

where A ∈ R
n1×n2×n, X ∈ R

n2×n3×n, B ∈ R
n1×n3×n, and ∗ denotes the tensor product,

known as the t-product [26]. The t-product is a modern tool for working with tensors

proposed and developed by Kilmer and Martin [26] a little over a decade ago. This

product was motivated by the search for a tensor operation closed under multiplica-

tion, which classical tensor products such as the n-mode product violate, and for appli-

cations that require tensor factorization. Since then, more and more analyses under the

t-product [42, 52] and applications of the t-product have been proposed and studied,

including dictionary learning [23, 48], image processing [20, 21], and in neural net-

works [44]. The deblurring problem specifically can be reformulated into a t-product

linear system of the form A ∗ X = B where X is the underlying images/video, A is the

deblurring operator, and B is the resulting blurred image/video [12,46]. Typically, ap-

plications in which one needs to solve a t-product linear system can be determined by

choice of model for prediction or in settings in where t-product linear systems naturally

occur. An example of a naturally occurring setting is the image deblurring problem. In

model selection, one assumes that a good model for the response variable B given A is

given by the t-product operator.

The t-product can be viewed as a generalization of the matrix-vector product. In

particular, when n = 1 and n3 = 1, the t-product simplifies to the matrix-vector product.

In the matrix-data setting, row and column iterative methods have been proposed to

solve large-scale linear systems of equations

Ax = b, (1.2)

where A ∈ R
n1×n2 , b ∈ R

n1×1 are given and x ∈ R
n2×1 is unknown. When n1 and

n2 are very large, solving the linear system directly (e.g., by computing the pseudo-

inverse) quickly becomes impractical. In other large-scale settings, one may not even

be able to load all entries but only a few rows or columns of the matrix A at a time.

In such settings, stochastic iterative methods with low memory footprints, such as the

Randomized Kaczmarz or Randomized Gauss-Seidel (RGS) algorithms, can be used

to solve (1.2). The relationship between these two methods, one using rows of the

matrix and the other using columns of the matrix, has been studied in previous works

[40]. Such row and column action methods solving linear systems have been further

generalized to a framework known as sketch-and-project [8,17,18,43,45].

Sketching simplifies computations by solving a sub-system as a proxy to the origi-

nal system while preserving the data’s intrinsic characteristics, thereby addressing the

practical limitations of direct manipulation due to size or complexity [43,45,51], which

proves essential in scenarios where handling full datasets is impractical. A primary

advantage of sketching is the enhancement of computational efficiency. In tensor op-

erations such as multiplications or factorizations, multiplication complexity (and so is

the solving complexity) can increase exponentially with the sizes of the tensor mode


