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Abstract. Inspired by the row and column action methods for solving large-scale
linear systems, in this work, we explore the use of frontal slices for solving tensor
linear systems. In particular, this paper presents a novel approach for using frontal
slices of a tensor A to solve tensor linear systems A « X = 3 where * denotes the t-
product. In addition, we consider variations of this method, including cyclic, block,
and randomized approaches, each designed to optimize performance in different
operational contexts. Our primary contribution lies in the development and conver-
gence analysis of these methods. Experimental results on synthetically generated
and real-world data, including applications such as image and video deblurring,
demonstrate the efficacy of our proposed approaches and validate our theoretical
findings.
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1. Introduction

In the realm of contemporary data science, the availability of multi-dimensional
data, commonly referred to as tensors, has catalyzed transformative advances across
diverse domains such as machine learning [8,46], neuroimaging [38], recommenda-
tion systems [6] and signal processing [7,43,47]. Tensors, which extend beyond the
simpler constructs of matrices, encapsulate higher-order interactions within data that
matrices alone cannot. While potentially offering a more comprehensive framework
for analysis and predictive modeling [7, 27], tensors come with complexity and high
dimensionality, which introduce escalated computational costs and demanding storage
requirements, particularly in large-scale and high-fidelity compressible datasets [1,25].
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In this work, we are interested in solving large-scale consistent tensor multi-linear
systems of the form
Ax X =B, (1.1)

where A € R™M1xm2xny ¢ Rr2xnsxn 3 c RMX"3xn and x denotes the tensor product,
known as the t-product [26]. The t-product is a modern tool for working with tensors
proposed and developed by Kilmer and Martin [26] a little over a decade ago. This
product was motivated by the search for a tensor operation closed under multiplica-
tion, which classical tensor products such as the n-mode product violate, and for appli-
cations that require tensor factorization. Since then, more and more analyses under the
t-product [42,52] and applications of the t-product have been proposed and studied,
including dictionary learning [23, 48], image processing [20,21], and in neural net-
works [44]. The deblurring problem specifically can be reformulated into a t-product
linear system of the form A x X = I3 where X is the underlying images/video, A is the
deblurring operator, and B is the resulting blurred image/video [12,46]. Typically, ap-
plications in which one needs to solve a t-product linear system can be determined by
choice of model for prediction or in settings in where t-product linear systems naturally
occur. An example of a naturally occurring setting is the image deblurring problem. In
model selection, one assumes that a good model for the response variable B given A is
given by the t-product operator.

The t-product can be viewed as a generalization of the matrix-vector product. In
particular, when n = 1 and n3 = 1, the t-product simplifies to the matrix-vector product.
In the matrix-data setting, row and column iterative methods have been proposed to
solve large-scale linear systems of equations

Az = b, (1.2)

where A € RMX"2 p ¢ R™*! are given and = € R™*! is unknown. When n; and
no are very large, solving the linear system directly (e.g., by computing the pseudo-
inverse) quickly becomes impractical. In other large-scale settings, one may not even
be able to load all entries but only a few rows or columns of the matrix A at a time.
In such settings, stochastic iterative methods with low memory footprints, such as the
Randomized Kaczmarz or Randomized Gauss-Seidel (RGS) algorithms, can be used
to solve (1.2). The relationship between these two methods, one using rows of the
matrix and the other using columns of the matrix, has been studied in previous works
[40]. Such row and column action methods solving linear systems have been further
generalized to a framework known as sketch-and-project [8,17,18,43,45].

Sketching simplifies computations by solving a sub-system as a proxy to the origi-
nal system while preserving the data’s intrinsic characteristics, thereby addressing the
practical limitations of direct manipulation due to size or complexity [43,45,51], which
proves essential in scenarios where handling full datasets is impractical. A primary
advantage of sketching is the enhancement of computational efficiency. In tensor op-
erations such as multiplications or factorizations, multiplication complexity (and so is
the solving complexity) can increase exponentially with the sizes of the tensor mode



