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Abstract. This paper presents an a priori error analysis of the Deep Mixed Resid-

ual method (MIM) for solving high-order elliptic equations with non-homogeneous
boundary conditions, including Dirichlet, Neumann, and Robin conditions. We ex-

amine MIM with two types of loss functions, referred to as first-order and second-
order least squares systems. By providing boundedness and coercivity analysis, we

leverage Céa’s Lemma to decompose the total error into the approximation, general-

ization, and optimization errors. Utilizing the Barron space theory and Rademacher
complexity, an a priori error is derived regarding the training samples and network

size that are exempt from the curse of dimensionality. Our results reveal that MIM

significantly reduces the regularity requirements for activation functions compared
to the deep Ritz method, implying the effectiveness of MIM in solving high-order

equations.
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1. Introduction

Partial differential equations (PDEs) are of fundamental importance in modeling

phenomena across various disciplines in natural science and society. Developing re-

liable and efficient numerical methods has a long history in scientific computing and

engineering applications. Traditional numerical methods, such as finite difference and

finite element, have been successfully established and widely applied. However, these

methods often encounter challenges when applied to high-dimensional problems, pri-

marily due to high computational costs. In fact, approximating PDE solutions using

∗Corresponding author. Email addresses: mjbai@stu.suda.edu.cn (M. Bai), jingrunchen@ustc.edu.cn

(J. Chen), durui@suda.edu.cn (R. Du), zhiwei.sun@asc.tuwien.ac.at (Z. Sun)

http://www.global-sci.org/nmtma 395 ©2025 Global-Science Press



396 M. Bai et al.

traditional methods incurs a computational cost that grows exponentially with the di-

mensionality of the problem — a phenomenon commonly referred to as the “curse of

dimensionality” (CoD).

In recent years, neural networks have emerged as a promising tool for solving PDEs,

demonstrating their potential to address the CoD effectively [3,7,10,18,19,26,31]. No-

table approaches include the deep Galerkin method [29] and physics-informed neural

networks (PINNs) [26], which employ the PDE residual in a least-squares framework

as the loss function. Another notable approach, the deep Ritz method (DRM) [7],

leverages the variational form (when available) of the target PDE to define the loss

function. More recently, the deep mixed residual method (MIM) [18, 19] has intro-

duced auxiliary networks to approximate the solution derivatives, allowing for exact

enforcement of boundary and initial conditions. Compared to DRM and PINN, MIM has

shown advantages in certain models, producing better approximations and accelerating

the training process. Additionally, MIM offers unique benefits for handling high-order

PDEs by transforming complex high-order problems into lower-order representations,

thereby reducing computational complexity and improving solution stability.

In this work, we present an error analysis of the MIM for solving high-order el-

liptic equations using two-layer neural networks. High-order elliptic equations have

extensive applications in materials science [5, 12], image processing [1], and elastic

mechanics [13]. To illustrate the MIM framework for high-order equations, consider

a 2n-order elliptic equation with general boundary conditions

∆nu = f, x ∈ Ω,

B(u,∇u,∆u, · · · ,∇∆n−1u) = g, x ∈ ∂Ω.
(1.1)

MIM introduces auxiliary networks φi and vector-valued networks ψj to approximate

∆iu and ∇∆ju for 0 ≤ i, j ≤ n− 1. Combining the squared residual loss with a penalty

term yields the mixed residual loss function

‖divψn−1 − f‖2L2(Ω) + λ1‖B(φ0,ψ0, · · · ,ψn−1)− g‖2L2(∂Ω)

+ λ2

(
n−1∑

i=0

‖∇φi −ψi‖2L2(Ω) +

n−2∑

i=0

‖φi+1 − divψi‖2L2(∂Ω)

)
. (1.2)

This formulation is also referred to as the first-order least squares system and has been

used in the finite element method [4]. Moreover, we also introduce the second-order

least squares system, where we use networks ϕi to approximate ∆iu. Then, the mixed

residual loss function is given by

‖∆ϕn−1 − f‖2L2(Ω) + λ1‖B(ϕ0,∇ϕ0, · · · ,∇ϕn−1)− g‖2L2(∂Ω)

+ λ2

n−2∑

i=0

‖∆ϕi − ϕi+1‖2L2(Ω). (1.3)

In this paper, we examine the 2n-order elliptic equation (1.1) under Dirichlet, Neu-

mann, and Robin boundary conditions. Both first-order and second-order least squares


