Numer. Math. Theor. Meth. Appl. Vol. 18, No. 2, pp. 463-486
doi: 10.4208/nmtma.0A-2024-0105 May 2025

Convergence of a Generalized Primal-Dual
Algorithm with an Improved Condition
for Saddle Point Problems

Fan Jiang', Yueying Luo?, Xingju Cai? and Tanxing Wang>*

! Department of Information and Computing Science, School of
Mathematics and Statistics, Nanjing University of Information
Science and Technology, Nanjing 210044, China

2 School of Mathematical Sciences, Ministry of Education Key
Laboratory for NSLSCS, Nanjing Normal University, Nanjing
210023, China

Received 7 September 2024; Accepted (in revised version) 7 January 2025

Abstract. We consider a general convex-concave saddle point problem that fre-
quently arises in large-scale image processing. First-order primal-dual algorithms
have garnered significant attention due to their promising results in solving sad-
dle point problems. Notably, these algorithms exhibit improved performance with
larger step sizes. In a recent series of articles, the upper bound on step sizes has
been increased, thereby relaxing the convergence-guaranteeing condition. This pa-
per analyzes the generalized primal-dual method proposed in [B. He, F. Ma, S. Xu,
X. Yuan, SIAM J. Imaging Sci. 15 (2022)] and introduces a better condition to en-
sure its convergence. This enhanced condition also encompasses the optimal upper
bound of step sizes in the primal-dual hybrid gradient method. We establish both
the global convergence of the iterates and the ergodic O(1/N) convergence rate
for the objective function value in the generalized primal-dual algorithm under the
enhanced condition.
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1. Introduction

Consider the following fundamental convex-concave saddle point problem:

minmax £(z,y) := f (@) + (Kz,y) — 9(y), (1.1)
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where X and ) are two finite-dimensional real Euclidean spaces, each equipped with

the inner product (-, -) and its induced norm || - || = /(-,:). K : X — ) is a bounded
linear operator with the operator norm L = ||K]||, f : X — (—oo,o0] and g : Y —

(—o0, 0] are proper closed convex functions. Numerous specific instances, including
zero-sum games, convex programs with linear constraints, and a variety of variational
models for image processing, fall under this problem (1.1) [11,33-35].

It is well known that (1.1) is equivalent to the primal problem

min f(z)+ ¢" (Kz), (1.2)
and the dual problem
min f*(=K"y) +9(v), (1.3)

where ¢g* is the Fenchel conjugate (see the definition in Section 2) of the function g.

For solving the convex-concave saddle point problem (1.1), one benchmark is the
first-order primal-dual algorithm proposed by Chambolle and Pock [5,7]. This algo-
rithm can be expressed as

P = prox_ (aF — 7Ky, (1.4a)
P = prox, (4 + oK (& + 0@k — 1)), (1.4b)

where 6 € [0, 1] is a combination parameter, 7 > 0 and o > 0 are the proximal pa-
rameters (or step sizes) for the two subproblems (1.4a) and (1.4b), respectively. When
# = 0, this algorithm (1.4) reduces to the Arrow-Hurwicz method in [1], which received
significant attention due to its promising performance in solving the total variation im-
age restoration problem [35]. To guarantee the convergence of the Arrow-Hurwicz
method, additional restrictive assumptions should be posed, such as strong convexity
of the objective functions in (1.1) or some requirements on step sizes T and o as studied
in [16,35]. In addition, one can take the iterate generated by (1.4) as a predictor and
obtain the next iterate by a simple correction step to ensure convergence [17]. Note
that the range of # can be further extended to the real number field (see [3,18]). The
scheme (1.4) with § = 1, known as the primal-dual hybrid gradient method (PDHG)
in [5, 6], can be described as

{ AR prox_; (2% — TK*y*) |

(1.5)
YRt = prox,, (y* + o K (2271 — b)) |

and is the most popular choice since it does not require strong convexity or an ad-
ditional correction step. It is worth mentioning that He and Yuan [17] elegantly
interpreted this scheme (1.5) as an instance of the generalized proximal point algo-
rithm with the corresponding proximal measure (CP-PPA), and it is easy to deduce
the convergence of (1.5) from a PPA point of view. The equivalence of the Douglas-
Rachford splitting method (DRSM) and PDHG was recently demonstrated by [28].
Note that the alternating direction method of multipliers (ADMM) [13, 14] is also able



