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Abstract. We consider a general convex-concave saddle point problem that fre-

quently arises in large-scale image processing. First-order primal-dual algorithms
have garnered significant attention due to their promising results in solving sad-

dle point problems. Notably, these algorithms exhibit improved performance with

larger step sizes. In a recent series of articles, the upper bound on step sizes has
been increased, thereby relaxing the convergence-guaranteeing condition. This pa-

per analyzes the generalized primal-dual method proposed in [B. He, F. Ma, S. Xu,
X. Yuan, SIAM J. Imaging Sci. 15 (2022)] and introduces a better condition to en-

sure its convergence. This enhanced condition also encompasses the optimal upper

bound of step sizes in the primal-dual hybrid gradient method. We establish both
the global convergence of the iterates and the ergodic O(1/N) convergence rate

for the objective function value in the generalized primal-dual algorithm under the

enhanced condition.
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1. Introduction

Consider the following fundamental convex-concave saddle point problem:

min
x∈X

max
y∈Y

L(x, y) := f(x) + 〈Kx, y〉 − g(y), (1.1)
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where X and Y are two finite-dimensional real Euclidean spaces, each equipped with

the inner product 〈·, ·〉 and its induced norm ‖ · ‖ =
√

〈·, ·〉. K : X → Y is a bounded

linear operator with the operator norm L = ‖K‖, f : X → (−∞,∞] and g : Y →
(−∞,∞] are proper closed convex functions. Numerous specific instances, including

zero-sum games, convex programs with linear constraints, and a variety of variational

models for image processing, fall under this problem (1.1) [11,33–35].

It is well known that (1.1) is equivalent to the primal problem

min
x∈X

f(x) + g∗(Kx), (1.2)

and the dual problem

min
y∈Y

f∗(−K∗y) + g(y), (1.3)

where g∗ is the Fenchel conjugate (see the definition in Section 2) of the function g.
For solving the convex-concave saddle point problem (1.1), one benchmark is the

first-order primal-dual algorithm proposed by Chambolle and Pock [5, 7]. This algo-

rithm can be expressed as

{
xk+1 = proxτf

(
xk − τK∗yk

)
, (1.4a)

yk+1 = proxσg
(
yk + σK(xk+1 + θ(xk+1 − xk))

)
, (1.4b)

where θ ∈ [0, 1] is a combination parameter, τ > 0 and σ > 0 are the proximal pa-

rameters (or step sizes) for the two subproblems (1.4a) and (1.4b), respectively. When

θ = 0, this algorithm (1.4) reduces to the Arrow-Hurwicz method in [1], which received

significant attention due to its promising performance in solving the total variation im-

age restoration problem [35]. To guarantee the convergence of the Arrow-Hurwicz

method, additional restrictive assumptions should be posed, such as strong convexity

of the objective functions in (1.1) or some requirements on step sizes τ and σ as studied

in [16,35]. In addition, one can take the iterate generated by (1.4) as a predictor and

obtain the next iterate by a simple correction step to ensure convergence [17]. Note

that the range of θ can be further extended to the real number field (see [3, 18]). The

scheme (1.4) with θ = 1, known as the primal-dual hybrid gradient method (PDHG)

in [5,6], can be described as

{
xk+1 = proxτf

(
xk − τK∗yk

)
,

yk+1 = proxσg
(
yk + σK(2xk+1 − xk)

)
,

(1.5)

and is the most popular choice since it does not require strong convexity or an ad-

ditional correction step. It is worth mentioning that He and Yuan [17] elegantly

interpreted this scheme (1.5) as an instance of the generalized proximal point algo-

rithm with the corresponding proximal measure (CP-PPA), and it is easy to deduce

the convergence of (1.5) from a PPA point of view. The equivalence of the Douglas-

Rachford splitting method (DRSM) and PDHG was recently demonstrated by [28].

Note that the alternating direction method of multipliers (ADMM) [13,14] is also able


