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Abstract. In this paper, we solve the inverse source problem of fractional evolution
PDEs by MC-fPINNs. We construct the loss function in terms of the governing equa-
tion residual, boundary residual, initial residual and measurement data with noise.
Meanwhile, we present a rigorous error analysis of this method. In the experimental
section, we present the reconstruction outcomes of the source term for three evolu-
tionary fractional partial differential equations (fPDEs): the evolutionary fractional
Laplacian equation, the time-space fractional diffusion equation, and the fractional
advection-diffusion equation. These experiments illustrate robust performance of
MC-fPINNs in both low-dimensional and high-dimensional scenarios. Our results
confirm the effectiveness of MC-fPINNs in solving such inverse source problem, and
also provide a theoretical foundation to choose neural networks parameters in this
algorithm.
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1. Introduction

Fractional evolution partial differential equations have emerged as a powerful fra-
mework for modeling complex systems where traditional integer-order models fall
short. These equations, by incorporating non-local and memory effects via fractional
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derivatives, are particularly suited for describing processes in fields as diverse as acous-
tic wave propagation with frequency-dependent dissipation [4], viscoelastic constitu-
tive law [20] and porous media [28], just to mention a few examples. In many practical
scenarios, the internal source term f(z,t) in fractional evolution PDEs needs to be re-
constructed simultaneously with the solution u(x,t) [2,12]. To solve such an inverse
problem of fractional partial differential equations, various classical methods have been
proposed in the last few years [5,27,33]. However, the nonlocality and singularity of
fractional derivatives still necessitate substantial computational cost and memory re-
sources, especially for higher dimensional problems.

More recently, with the great success of deep learning in computer science, several
neural network-based solvers have been developed. Among these, physics-informed
neural networks (PINNs) [24] have become one of the most applicable methods to
solve numerous types of PDEs. By definition, it constructs solution through searching
an optimal neural network function to minimize some loss function, which consists
of residual term, initial and boundary condition, and fitting error of extra measure
data [6,7]. Based on PINNs, various strategies are further proposed to solve the in-
verse problem of fPDEs. In [23] Pang et al. present the fPINNs method, which uti-
lizes automatic differentiation for the integer-order derivatives of the neural network’s
output and approximates the fractional derivatives through traditional numerical dis-
cretization. However, the dependence on conventional differential techniques increases
the computational costs and poses difficulties in high-dimensional cases. Later Yan et
al. [31] developed the Laplace-fPINNs method. Using the Laplace transform, it first
converts the initial time-fractional diffusion equation into a constrained equation in
Laplace space, then solves this equation with the original PINNs. After that, an inverse
Laplace transform is applied to map the PINNs solution back to the time domain. In
their work, on the other hand, only the time-fractional equations have been considered,
while a further investigation on the time-space fractional differential equations is still
needed.

To avoid classical discretization, Guo et al. [10] proposed MC-fPINN to compute
fractional derivatives in fPDEs. With the Monte Carlo method, the integral in fractional
differentiation for the Caputo fractional derivatives can be well approximated. Based
on this, we studied the inverse source problem of the fractional Poisson equation [26],
in which a rigorous convergence rate of MC-fPINNs was presented. In this work, we
would further extend this method to the inverse source problem for fractional evolution
partial differential equations. The introduction of time brings more challenges and ne-
cessitates essential adjustments in the formulation, analysis, and numerical treatment
of the MC-fPINNs method. Except for the neural network for solution u(x,t), we rep-
resent the forcing term f(x,t) as another fully-connected neural network. To optimize
these two neural networks, we define a new loss function containing regularization
terms for the residuals of the fPDEs and the measurement data at the final time ¢t = T..
Several numerical examples are shown to demonstrate the effectiveness of MC-fPINNs
in solving such evolution equations, including: the time-space fractional diffusion equa-
tion, the evolution fractional Laplace equation, and the fractional advection diffusion



