Numer. Math. Theor. Meth. Appl. Vol. 18, No. 2, pp. 521-543
doi: 10.4208/nmtma.0A-2024-0123 May 2025

Noise Robust Physics-Informed Generative
Adversarial Networks for Solving Stochastic
Differential Equations

Lin Wang!, Min Yang"*, Ruisong Gao? and Chuanjun Chen!

1 School of Mathematics and Information Sciences, Yantai University,
Yantai 264005, China

2 College of Science, China University of Petroleum East China,
Qingdao 266580, China

Received 24 October 2024; Accepted (in revised version) 22 January 2025

Abstract. This paper proposes a class of physics-informed neural networks called
noise robust physics-informed generative adversarial networks (NR-PIGANS) to solve
stochastic differential equations in the presence of noisy measurements. In these
scenarios, while the governing equations are known, only a limited number of sen-
sor measurements of the system parameters are available, and some may contain
significant measurement errors. To address this, NR-PIGAN incorporates an addi-
tional noise generator with specific distribution constraints into a physics-informed
generative adversarial network framework. The noise generator is trained along-
side the clean data generators in an end-to-end manner, enabling the model to ef-
fectively capture both clean and noisy data distributions under the given physical
constraints. Numerical experiments demonstrate that NR-PIGAN excels in handling
forward and inverse problems under diverse noise perturbations, and its advantage
becomes more pronounced as the noise level increases.
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1. Introduction

Stochastic differential equations (SDEs) [10] have emerged as pivotal mathemati-
cal tools for simulating the evolution of stochastic processes and have found increas-
ingly widespread applications across diverse disciplines in recent years. By integrating
differential equation theory with stochastic process theory, these equations effectively
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capture random variations in complex systems. As such, they are well-suited for simu-
lating real-world processes such as financial market fluctuations [26], particle disper-
sion [33], and neural behavior [35].

In recent years, the rapid development of deep learning technology has made it an
effective method for solving stochastic equations [14,23,27,29,30,34,39]. Particularly
noteworthy is the emergence of the physics-informed neural network (PINN) paradigm
[6,9,15,16,18,28,36,38], which seamlessly integrating physical insights as adaptable
constraints within the loss function. This innovative approach utilizes machine learning
techniques such as automatic differentiation [3] and gradient descent [2] for efficient
training. Li et al. [21] introduced a physics-informed Karhunen-Loeve method com-
bined with neural networks for parameter estimation in SDEs under sparse measure-
ments. Ma et al. [25] proposed a PINN method for solving time-dependent stochastic
fractional PDEs. Teng et al. [31] developed a deep learning-based numerical algorithm
to solve forward-backward doubly SDEs, even in high-dimensional cases. Additionally,
Guo et al. [13] proposed a data-driven approach for SDEs using a normalized field
flow-based method. In situations where exact analytical parameter representations
are not available and data from sparse sensors is limited, Zhong et al. [40] utilized
variational autoencoders to address forward, inverse, and mixed problems. Further,
a closely related work to our research is the introduction of physics-informed gener-
ative adversarial networks (PI-WGAN) by Yang et al. [37]. This approach effectively
combines generative adversarial networks (GANs) [11] with physical insights to tackle
challenges in solving SDE problems through adversarial training for both the genera-
tor and discriminator. Recently, Gao et al. [7] introduced physics-informed variational
embedding generative adversarial networks (PI-'VEGAN) to enhance training stability
by integrating an encoder that better captures the real data distribution. Furthermore,
Gao et al. [8] also proposed physics-informed generator-encoder adversarial networks
(PI-GEA) with latent space matching to enhances accuracy and stability without in-
creasing computational costs. The above studies primarily consider ideal situations
where sensor measurements are clean and accurate. However, in real-world scenarios,
sensor measurements are often subject to noise, which can degrade model performance
and therefore requires special handling.

There is a lot of research on the application of neural networks to solve SDEs under
noisy conditions. For instance, Wang and Yao [32] introduced the vNPs-SDE model,
which effectively addresses noisy, irregularly sampled data while providing robust un-
certainty estimates. This model employs variants of neural processes to manage noisy
in-distribution data, enabling more effective processing of the completed in-distribution
data with SDE-Net [20]. Bonneville and Earls [4] proposed using Bayesian neural net-
works to recover system states and parameters from noisy measurement data related
to underlying equations. They utilized Hamiltonian Monte Carlo to sample the poste-
rior distribution of a deep Bayesian neural network and generated derivative datasets
as surrogates for the system response. Their approach applies sequential threshold
Bayesian linear regression on these derivatives to recover the original equation param-
eters. Liu et al. [24] developed a Bayesian physics-informed extreme learning machine



