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Abstract. This paper introduces two algorithms based on the conjugate residual

method and variable s-step for solving linear systems with non-square coefficient

matrices. The introduced algorithms demonstrate their effectiveness through nu-
merical comparisons with other methods, specifically CGNE and CGNR, to solve

non-square linear systems. The approach aims to enhance the efficiency of solving

problems related to control systems and imaging underground layers, particularly in
the context of seismic tomography.
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1. Introduction

Classical iterative methods for solving linear systems are known for their high com-

putational costs. The Krylov subspace methods (KSMs) has emerged as an alternative

approach for classical iterative methods. The conjugate gradient (CG) method, the

famous KSM, was initially developed to solve symmetric positive definite linear sys-

tems [27]. Other methods, such as SYMMLQ and MINRES, were introduced to find the

solution of symmetric (non-positive definite) systems [43]. Subsequently, KSMs were

extended to non-symmetric systems, resulting in the development of methods such as
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CGNE, CGNR [5], LSQR [42], GMRES [46], CGS [48], BiCG [35], Bi-CGSTAB [53],

among others. A comprehensive presentation of these methods can be found in [40].

In recent years, KSMs have found applications for solving the matrix equations [26],

the tensor equations [25], the eigenvalue problems [24] and other related problems.

The CG algorithm was utilized for large-scale nonlinear equations and image restora-

tion problems [57]. This algorithm was also employed in the optimal guidance of mis-

sile landings [36], and for solving nonlinear problems [2]. In [19], a recursive sequence

was proposed to solve parametric systems using the BiCG method with Chebyshev poly-

nomials. The shifted BiCG method was used to solve the Stein matrix equation in [58].

Preconditioned GMRES methods were presented to handle Toeplitz linear systems in

fractional eigenvalue problems [61] and ill-posed systems [41]. Several algorithms

utilizing Krylov subspace methods and their convergence analyses were developed to

solve tensor systems with Einstein products [23,28].

In 1989, for the first time, Chronopoulos and Gear proposed ts-step CG for solving

symmetric linear systems [13]. This method (unlike [54]) allowed stable computa-

tion of iterations in s-step CG for s ≤ 5. The s-step methods require O(2s) inner

products per s-step iteration. The s-step KSMs have several applications in solving

practical engineering problems increasing the performance of computations of high

performance computing systems (HPCS) [20, 21, 29, 55]. The s-step technique was

used for solving linear systems and eigenvalue problems of sparse symmetric and

nonsymmetric matrices, also implemented in high-performance computing applica-

tions [12,13,18,32,33,38]. This technique was also applied to the conjugate residual

(CR) method [10]. Then s-step CR method was extended for non-symmetric problems

by using modified Gram Schmidt orthogonalization of the direction vectors where is

stable for s ≤ 16 [15–18]. To optimize the runtime of GMRES and orthomin(k) meth-

ods, the s-step variant of them was introduced in [11, 14, 17, 30]. In [1, 22, 51, 60],

various s-step algorithms were presented to solve several problems.

Recent works in the field of s-step KSMs have introduced novel approaches [9].

In [6], a bound on the difference between the true residual and the updated residual

was presented for communication-avoiding Krylov methods, allowing approximation

without increasing communication and computation. Subsequently, an s-step Lanczos

algorithm was introduced, extending the accuracy band of the Lanczos algorithm to

the s-step Lanczos algorithm in [7]. The s-step nonsymmetric Lanczos algorithm was

introduced to reduce the synchronization of QMR and BiCG algorithms in [22]. In [8],

with a slight increase in computations in the s-step Lanczos algorithm, the accuracy of

the CG algorithm is improved. By choosing appropriate polynomials and block orthog-

onalization, the s-step GMRES algorithm was improved in terms of numerical stability

in [56]. For better parallelization of s-step GMRES and s-step orthomin(k) algorithms

on supercomputers, these algorithms were introduced with a reduction in communica-

tion and appropriate data locality [14].

In [51], the estimation of a suitable fixed value for s in the s-step orthomin(k)

algorithm was performed using the KADNA library. However, this fixed value did not

enhance the algorithm’s flexibility in reducing its communication. Recently, the s-step


