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Abstract. This paper is concerned with devising an efficient numerical method for
the piezoelectric equations in an unbounded domain, which plays a fundamental

role in design and analysis of microacoustic devices with piezoelectric substrate. We
make use of the perfectly matched layer method to transform the underlying prob-

lem as a surrogate in a bounded domain, which is further solved by a sparse wavelet

element method. The latter method can be viewed as a combination of a wavelet
element method and a sparse grid method. The numerical results are performed to

show the proposed method is very efficient and outperforms the usual finite element

method. It can be naturally extended to two/three dimensional problems in an un-
bounded domain whose boundary consists of line segments or rectangles parallel to

coordinate lines or planes.
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1. Introduction

Microacoustic devices with piezoelectric substrate have been widely used in the

field of modern communication and network of physical devices (IoT) [25, 42]. The

work principle of all these microacoustic devices is governed by the so-called positive

and reverse piezoelectric effect [11,12,29], that means, when a piezoelectric material

is mechanically deformed, a voltage is generated inside the material, and conversely

electric field can deform the piezoelectric material. According to this effect, electrical

signals can propagate along the piezoelectric substrate in the interconversion of acous-

tic waves and electric fields. In many cases, the size of the piezoelectric substrate is

much larger than the wavelength of the acoustic wave. Therefore, the mathematical
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model of the microacoustic devices always rely on the piezoelectric equations defined in

an unbounded domain. In this paper, we are intended to design an efficient numerical

method for such a problem.

For this purpose, the first issue to be settled is that the underlying problem is de-

fined in an unbounded domain. As far as we know, there are several ways to address

this difficulty [43]. The first class of methods are the so-called boundary integral equa-

tion (BIE) methods, which transform a partial differential equation in an unbounded

domain as a boundary integral equation on the boundary in terms of Green’s func-

tions, and further develop numerical methods [13, 17, 20, 34]. The spectral methods

are also frequently used to solve problems in unbounded domains because some of

their basis functions, such as Hermite basis functions and Laguerre basis functions, are

directly defined in unbounded domains [35–37, 39]. The other class of methods first

approximate the problem in an unbounded domain by its bounded analogue through

the absorbing boundary conditions (ABC) or the perfectly matched layer (PML) meth-

ods. After truncation, one can numerically solve the resulting bounded problems using

the fundamental numerical methods, such as the finite element methods (FEMs), the

wavelet element methods (WEMs) and the finite difference methods (FDMs). We refer

the reader to [1,15,16,31] for the ABC methods and [3,26,27,33] for the PML meth-

ods. This paper will use the PML method in [22] to truncate the unbounded domain to

transform the original problem into a problem in a bounded domain. It is worth noting

that the PML methods have been widely borrowed to solve many kinds of problems in-

volving microacoustic devices with piezoelectric substrate, such as the surface acoustic

wave (SAW) and the bulk acoustic wave (BAW) resonators [22,23,32].

Next, we should focus on developing fast solvers for the underlying problem in

a bounded domain. As is well known, the FEMs are a class of typical methods for

numerically solving the piezoelectric equations in a bounded domain [2,6,22–24,32].

However, there are two issues to be overcome for the methods. On the one hand,

since the piezoelectric equations require to solve both the displacement and the electric

potential, the storage overhead is very large for the underlying large scale linear system.

On the other hand, because of the use of the PML approach, one needs to solve a large

scale complex linear system, which is more difficult to deal with than a real linear

system.

In regular domains, the sparse grid methods, also known as the sparse tensor prod-

uct method, are well accepted approaches to devising efficient algorithms, which can

get over the above two difficulties. The concept of these methods was first used by

Smoljak to construct multivariate quadrature formulas [38]. Its main ideas include

multiscale orthogonal (or biorthogonal) decomposition of nested vector spaces to cre-

ate wavelet spaces, and then selecting a small number of wavelet bases from the full

tensor product space to form a sparse tensor product space by some rules. Up to now,

the sparse grid method has been applied to resolve several mathematical physics prob-

lems. For example, it was combined with the discontinuous Galerkin method to solve

higher dimensional elliptic equations [41] as well as radiative transfer equations [19].

Some other applications can be found in [21, 44]. These works fully demonstrate the


