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Abstract. An extrapolation method is proposed for the numerical computation of

hypersingular integrals with oscillatory kernels. The oscillatory integral is refor-
mulated as the weighted integral of a Hadamard finite part, which is subsequently

approximated using the weighted trapezoidal rule. The asymptotic expansion of the
error function is derived, and both the convergence order and the posterior error of

the algorithm are analyzed. Numerical examples verify the theoretical results and

demonstrate the validity of the proposed method.
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1. Introduction

Highly oscillatory problems are common in many scientific and engineering compu-

tations, especially in the study of electromagnetic and acoustic wave scattering. These

problems often involve integrals with rapidly oscillating kernels, which are also preva-

lent in quantum mechanics [2, 14]. Moreover, these problems often involve singular-

ities, where the kernel function exhibits a singular behavior at certain points, such as

1/(x− s)m. The integral kernel functions often have not only rapid oscillations but

also singularities [17, 30]. These characteristics make the numerical solution of such

integrals both challenging and crucial.

In solving partial differential equations (PDEs), the boundary element method

(BEM) is often used to reduce a two-dimensional problem to a one-dimensional Fred-
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holm integral equation [21], given by

λu(s) +

∫ b

a

K(s, x)

(x− s)m
u(x) dx = f(s), s ∈ (a, b), m = 1, 2, . . . .

Many studies have focused on the numerical solution when K(s, x) = 1. However, in

practical applications, kernel functions are often highly oscillatory, such as K(s, x) =
eik(x−s), with k ≫ 1, which leads to the emergence of highly oscillatory integrals.

Specifically, oscillatory integrals can be expressed as

I(f, s, k) =

∫ 1

−1

f(x)ω(x)

(x− s)m+1
eikx dx, s ∈ (−1, 1).

When m = 0, the integral is a Cauchy principal value integral, while for m ≥ 1 and

m ∈ N+, it becomes a hypersingular integral [19, 20, 22]. These oscillatory integrals

pose significant numerical challenges, especially when k is very large, as traditional

numerical integration methods often fail to handle them efficiently. Furthermore, some

equations have solutions that do not include singular kernels like 1/(x− s)m, but in-

stead take the form of more general oscillatory integrals, such as

I =

∫ b

a
f(x)eiωg(x) dx.

Many special functions can be expressed as integrals of highly oscillatory functions,

such as Bessel and Hankel functions, sine and cosine integrals, exponential integrals,

and hypergeometric functions. The oscillatory kernel is not limited to weighted inte-

grals with exponential functions, but represents a broader class of oscillatory situations

that arise in various fields. The model considered in this paper is the general form of

highly oscillatory integrals.

In many situations, the study of high-frequency problems essentially translates to

analyzing highly oscillatory differential or integral equations, which often involve ex-

tensive computations of oscillatory integrals. To address these challenges, a variety

of methods have been developed for efficiently computing highly oscillatory integrals.

Some of the most widely used techniques include the Filon method [10], the Levin

method [16,25], Clenshaw-Curtis quadrature rules [11,21], modulated Fourier expan-

sions [4], and Gaussian correlation quadrature formulas [13].

Sloan [24] introduced a stable Clenshaw-Curtis-Filon method based on Chebyshev

polynomial approximations. The main drawbacks of the Levin-type methods are that

the integration interval cannot include zeros and the computational complexity is rel-

atively high. Evans [9] proposed a generalized integration rule for computing highly

oscillatory integrals. In applications involving high-frequency power sources, circuit

systems often exhibit highly oscillatory solutions. Condon [5] addressed these prob-

lems by providing numerical solutions for simple circuits using a Filon-type method

based on generalized Fourier transforms. The combination of boundary element meth-

ods with the fast multipole method (FMM) and the Clenshaw-Curtis-Filon method has


