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Abstract. We propose a novel diffusion-based generative model for solving linear

stochastic diffusion equations, while enabling uncertainty quantification (UQ). By
embedding the governing physical laws into the generative process, our approach

establishes a mapping between control parameters and solutions across the latent

space of the diffusion model. This ensures that the generated solutions satisfy the
underlying physical constraints. Additionally, our method overcomes the limitation

of conventional diffusion models, which struggle to generate accurate solutions for
new control terms, and achieves superior accuracy compared to traditional data-

driven operator learning techniques. Furthermore, by sampling different noise real-

izations and analyzing variations in the generated solutions, we efficiently capture
solution diversity, enabling simultaneous prediction and comprehensive UQ. Exper-

imental results demonstrate that our method outperforms deep operator networks

and variational inference-based deep operator networks in both accuracy and confi-
dence estimation.

AMS subject classifications: 68T07, 65C20

Key words: Diffusion model, uncertainty quantification, linear diffusion equation, physics-
informed.

1. Introduction

The diffusion operator is used to model the transport and distribution of energy or

pressure in the complex system. It has broad applications in chemistry, biology, and en-

vironmental science. In financial modeling, variants of the diffusion equation, such as

the Fokker-Planck equation, are employed to characterize asset price dynamics [33,44].
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Solving the diffusion equation enables quantitative analysis of these diffusion pro-

cesses, offering theoretical foundations for optimizing pollutant control, designing drug

delivery systems, and predicting financial market behavior. In practical applications,

the diffusion equation often involves dynamic and uncertain parameters. For example,

in pollutant dispersion studies, the diffusion coefficient may depend on environmental

temperature, pressure, and medium properties, and dynamically varies with these pa-

rameters [21]. Moreover, in the porous media or biological tissues, the inhomogeneity

of microstructures and fluid-dynamic effects render experimental measurements of the

diffusion coefficient highly challenging. These challenges not only complicate model

validation but also introduce substantial uncertainty. Therefore, developing methods

to solve diffusion equations containing uncertain terms while effectively quantifying

the effects of these uncertainties is crucial for advancing numerical algorithms and en-

hancing practical applications in environmental management, biomedical engineering,

and related fields.

In the last decades, various methods have been proposed to solve partial differen-

tial equations (PDEs) and analyze its uncertainties, including the orthogonal polyno-

mial Galerkin projection method [22, 37], stochastic collocation methods [26, 38, 45],

and polynomial chaos methods [23]. Due to the limitations of these approaches in

high-dimensional problems, interpolation techniques such as least squares interpola-

tion [4,5] and radial basis function interpolation [15] have been developed. Although

these methods offer high theoretical accuracy, their iterative processes often incur sub-

stantial computational costs, limiting their practical efficiency. To address these chal-

lenges, data-driven and learning-based solvers have emerged [14, 34, 36]. Bayesian

physics-informed neural networks (BPINNs) [40], which integrate Bayesian NNs [18]

with physics-informed NNs [27], incorporate physical constraints to enable both sim-

ulation and uncertainty quantification in physical systems [24, 25]. However, BPINNs

face limitations in generalization. Alternative UQ methods for PDEs solvers include

ensemble-based NNs [1, 11, 19, 30] and approaches relying on independently trained

NNs within the evidential framework [31, 41]. While these methods enhance robust-

ness under uncertainty, independently trained NNs may suffer from insufficient infor-

mation sharing, and the evidential framework can introduce computational complexity

and model instability. Compared to traditional methods, machine learning approaches

offer significant advantages in UQ, including improved handling of complex scenarios,

data-driven adaptability, and computational efficiency, particularly in high-dimensional

settings [13, 20, 35, 42]. However, incorporating physical constraints often increases

computational costs. Therefore, further advancements in UQ methods are necessary to

enhance accuracy while reducing computational overhead [17].

Diffusion models are increasingly being employed as generative models for solv-

ing PDEs and performing UQ. With their probabilistic generative framework and high-

resolution output capabilities, diffusion models naturally capture uncertainties in data

distributions. Their application to PDEs solving and UQ has gained traction due to

their ability to generate detailed and realistic solutions. However, traditional diffusion

models are predominantly data-driven [12,29] and lack explicit enforcement of physi-


