Convergence Analysis of a Block-by-Block Method for Fractional Differential Equations

Authors

  • Jianfei Huang, Yifa Tang & Luis Vázquez

DOI:

https://doi.org/10.4208/nmtma.2012.m1038

Keywords:

Fractional differential equation, Caputo derivative, block-by-block method, convergence analysis.

Abstract

The block-by-block method, proposed by Linz for a kind of Volterra integral equations with nonsingular kernels, and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations (FDEs) with Caputo derivatives, is an efficient and stable scheme. We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order index $\alpha>0$.

Published

2018-08-14

Issue

Section

Articles