Mathematical Modeling and Simulation of Antibubble Dynamics

Authors

  • Junxiang Yang Department of Mathematics, Korea University, Seoul 02841, Republic of Korea
  • Yibao Li School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China
  • Darae Jeong Department of Mathematics, Kangwon National University, Gangwon-do 24341, Republic of Korea
  • Junseok Kim Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

DOI:

https://doi.org/10.4208/nmtma.OA-2019-0082

Keywords:

Antibubble, conservative Allen-Cahn equation, Navier-Stokes equation.

Abstract

In this study, we propose a mathematical model and perform numerical simulations for the antibubble dynamics. An antibubble is a droplet of liquid surrounded by a thin film of a lighter liquid, which is also in a heavier surrounding fluid. The model is based on a phase-field method using a conservative Allen-Cahn equation with a space-time dependent Lagrange multiplier and a modified Navier-Stokes equation. In this model, the inner fluid, middle fluid and  outer fluid locate in specific diffusive layer regions according to specific phase filed (order parameter) values. If we represent the antibubble with conventional binary or ternary phase-field models, then it is difficult to have stable thin film. However, the proposed approach can prevent nonphysical breakup of fluid film during the simulation. Various numerical tests are performed to verify the efficiency of the proposed model.

Published

2020-03-06

Issue

Section

Articles