Approximation of the Spectral Fractional Powers of the Laplace-Beltrami Operator

Authors

  • Andrea Bonito
  • Wenyu Lei

DOI:

https://doi.org/10.4208/nmtma.OA-2022-0005s

Keywords:

Fractional diffusion, Laplace-Beltrami, FEM parametric methods on surfaces, Gaussian fields.

Abstract

We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence are observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in $L^2$ and $H^1.$ The performances of the algorithms are illustrated on different settings including the approximation of Gaussian fields on surfaces.

Published

2023-01-21

Issue

Section

Articles