L1 Existence and Uniqueness of Entropy Solutions to Nonlinear Multivalued Elliptic Equations with Homogeneous Neumann Boundary Condition and Variable Exponent

Authors

  • Stanislas\u0003 Ouaro Universit\u00e9 Ouaga I Pr Joseph KI-ZERBO, LAboratoire de Math\u00e9matique et Informatique (LAMI), Unit\u00e9 de Formation et de Recherches en Sciences Exactes et Appliqu\u00e9es, D\u00e9partement de Math\u00e9matiques, 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso
  • Arouna Ouedraogo Universit\u00e9 de Ouagadougou, Unit\u00e9 de Formation et de Recherche en Sciences Exactes et Appliqu\u00e9es, D\u00e9partement de Math\u00e9matiques B.P.7021 Ouagadougou 03, Burkina Faso

DOI:

https://doi.org/10.4208/jpde.v27.n1.1

Keywords:

Elliptic equation;variable exponent;entropy solution;L¹-data;Neumann boundary condition

Abstract

"

In this work, we study the following nonlinear homogeneous Neumann boundary value problem $\u03b2(u)\u2212diva(x,\u2207u) \u220b f in \u03a9, a(x,\u2207u)\u22c5\u03b7$ $=0$ on $\u2202\u03a9$, where $\u03a9$ is a smooth bounded open domain in $\u211c^N, N \u2265 3$ with smooth boundary $\u2202\u03a9$ and $\u03b7$ the outer unit normal vector on $\u2202\u03a9$. We prove the existence and uniqueness of an entropy solution for L\u00b9-data f. The functional setting involves Lebesgue and Sobolev spaces with variable exponent.<\/p>"

Published

2014-03-05

Issue

Section

Articles

Most read articles by the same author(s)