Structural Stability of p(x)-Laplace Problems with Fourier Type Boundary Condition

Authors

  • Kpe Kansie LAboratoire de Math\u00e9matiques et Informatique (LA.M.I), UFR. Sciences et Techniques, Universit\u00e9 Nazi Boni, 01 BP 1091 Bobo 01, Bobo-Dioulasso, Burkina Faso
  • Stanislas\u0003 Ouaro Universit\u00e9 Ouaga I Pr Joseph KI-ZERBO, LAboratoire de Math\u00e9matique et Informatique (LAMI), Unit\u00e9 de Formation et de Recherches en Sciences Exactes et Appliqu\u00e9es, D\u00e9partement de Math\u00e9matiques, 03 BP 7021 Ouaga 03 Ouagadougou, Burkina Faso

DOI:

https://doi.org/10.4208/jpde.v32.n3.3

Keywords:

Generalized Lebesgue and Sobolev spaces;Leray-Lions operator;weak solution;renormalized solution;Thermorheological fluids;continuous dependence;Fourier type boundary condition;Young measures.

Abstract

"

We study the continuous dependence on coefficients of solutions of the nonlinear nonhomogeneous Fourier boundary value problems involving the p(x)-Laplace\r\noperator.<\/p>"

Published

2019-10-14

Issue

Section

Articles

Most read articles by the same author(s)